SAF-RC-032 100-F Remaining Sites Burial Grounds Soil Full Protocol FINAL VALIDATION PACKAGE

COMPLETE COPY OF VALIDATION PACKAGE TO:

Jeanette Duncan (2) H9-02

MIP 03/13/00

COMMENTS:

SDG(K0146)

SAF-RC-032

Waste Site: 126-F-2

Date:

1 March 2006

To:

Washington Closure Hanford Inc. (technical representative)

From:

TechLaw, Inc.

Project:

100F Remaining Sites Burial Grounds - Soil - Full Protocol - Waste Site

126-F-2

Subject: Inorganics - Data Package No. K0146-LLI

INTRODUCTION

This memo presents the results of data validation on Data Package No. K0146 prepared by Lionville Laboratory Inc. (LLI). A list of samples validated along with the analyses reported and the method of analysis is provided in the following table.

	X Salaballand XX	Salnajolk: Deng	Na iliyasa kina ka	N, Valigeri (176)	The state of the s
ı	J10VC1	12/14/05	Soil	С	See note 1
į	J10VC2	12/14/05	Soil	С	See note 1
i	J10VC3	12/14/05	Soil	С	See note 1

^{1 -} ICP metals (6010B) and mercury (7471A).

Data validation was conducted in accordance with the Washington Closure Hanford (WCH) validation statement of work and the 100 Area Remedial Action Sampling and Analysis Plan (DOE/RL-96-22, February 2005). Appendices 1 through 6 provide the following information as indicated below:

Appendix 1. Glossary of Data Reporting Qualifiers

Appendix 2. Summary of Data Qualification

Appendix 3. Qualified Data Summary and Annotated Laboratory Reports

Appendix 4. Laboratory Narrative and Chain-of-Custody Documentation

Appendix 5. Data Validation Supporting Documentation

Appendix 6. Additional Documentation Requested by Client

DATA QUALITY PARAMETERS

· Holding Times

Analytical holding times for metals are assessed to ascertain whether the holding time requirements were met by the laboratory. The holding time requirements are as follows: Soil samples must be analyzed within 28 days for mercury and 6 months for ICP metals.

All holding times were acceptable.

Preparation (Method) Blanks

Preparation Blanks

At least one preparation blank, consisting of deionized distilled water processed through each sample preparation and analysis procedure, must be prepared and analyzed with every sample delivery group. In the case of positive blank results, samples with digestate concentrations less than five times the preparation blank value have had their associated values qualified as non-detected and flagged "U". Samples with concentrations of greater than five times the highest blank concentration do not require qualification.

In the case of negative blank results, if the absolute value exceeds the contract required detection limit (CRDL), all nondetects are rejected and flagged "UR" and all detects that are less than ten times the absolute value of the associated preparation blank result are qualified as estimates and flagged "J". If the absolute value of the negative preparation blank is greater than the instrument detection limit (IDL) and less than or equal to the CRDL, all nondetects are qualified as estimates and flagged "UJ" and all detects less than ten times the absolute value of the blank are qualified as estimates and flagged "J". If the sample results are greater than ten times the absolute value of the preparation blank, no qualification is necessary.

All preparation blank results were acceptable.

Field (Equipment) Blank

One field blank (J10VC3) was submitted for analysis. Aluminum, barium, calcium, chromium, copper, iron, potassium, manganese, magnesium, sodium, lead, silicon, vanadium and zinc were detected in the equipment blank. Under the WCH statement of work, no qualification is required.

Accuracy

Matrix Spike and Laboratory Control Sample

Matrix spike (MS) and laboratory control sample (LCS) analyses are used to assess the analytical accuracy of the reported data . The matrix spike is used to assess the effect of the matrix on the ability to accurately quantify sample concentrations. Recoveries must fall within the range of 70% to 130%. Samples with a recovery of less than 30% and a sample result below the IDL are rejected and flagged "UR". Samples with a recovery of 30% to 69% and a sample result less than the IDL are qualified "UJ". Samples with a recovery of greater than 130% or less than 70% and a sample result greater than the IDL are qualified as estimates and flagged "J". Finally, for samples with a recovery greater than 130% and a sample result less than the IDL, no qualification is required.

Due to a MS recovery outside QC limits (136.8%), all copper results were qualified as estimates and flagged "J".

Due to a MS recovery outside QC limits (40.2%), all antimony results were qualified as estimates and flagged "J".

All other accuracy results were acceptable.

Precision

Laboratory Duplicate Samples

Analytical precision is expressed by the relative percent differences (RPD) between the recoveries of matrix spike duplicate (MSD) analyses performed on a sample in the analytical batch. Precision may alternatively be assessed using unspiked duplicate analyses performed on a sample in the analytical batch. If both sample and replicate activities (concentrations) are greater than five times the CRDL and the RPD is less than 30%, no qualification is required. If either activity (concentration) is less than five times the CRDL, the RPD control limit is less than or equal to two times the CRDL. If the RPD is outside the applicable control limit, associated results are qualified as estimated detects or estimated non-detects.

Due to an RPD outside QC limits (70.9%), all lead results were qualified as estimates and flagged "J".

Due to an RPD outside QC limits (36.7%), all silicon results were qualified as estimates and flagged "J".

All other laboratory duplicate results were acceptable.

Field <u>Duplicate</u>

One set of field duplicates (J10VC1/J10VC2) were submitted for analysis. Field duplicates are assessed using the same criteria as for laboratory duplicates. All field duplicate results were acceptable.

Analytical Detection Levels

Reported analytical detection levels are compared against the 100 Area RQLs to ensure that laboratory detection levels meet the required criteria. All analytes met the RQL.

Completeness

Data package No. K0146 was submitted for validation and verified for completeness. Completeness is based on the percentage of data determined to be valid (i.e., not rejected). The completion percentage was 100%.

MAJOR DEFICIENCIES

None found.

MINOR DEFICIENCIES

The following minor deficiencies were noted:

- Due to a MS recovery outside QC limits (136.8%), all copper results were qualified as estimates and flagged "J".
- Due to a MS recovery outside QC limits (40.2%), all antimony results were qualified as estimates and flagged "J".
- Due to an RPD outside QC limits (70.9%), all lead results were qualified as estimates and flagged "J".
- Due to an RPD outside QC limits (36.7%), all silicon results were qualified as estimates and flagged "J".

Data flagged "J" indicates that the associated concentration is an estimate, but under the BHI statement of work, the data may be usable for decision-making purposes. All other validated results are considered accurate within the standard error associated with the methods.

REFERENCES

WCH, Contract #20266, Validation Statement of Work, Washington Closure Hanford Incorporated, July 7, 2003.

DOE/RL-96-22, Rev. 4, 100 Area Remedial Action Sampling and Analysis Plan, U.S. Department of Energy, February 2005.

Appendix 1

Glossary of Data Reporting Qualifiers

Qualifiers which may be applied by data validators in compliance with BHI validation SOW are as follows:

- Indicates the compound or analyte was analyzed for and not detected in the sample. The value reported is the sample quantitation limit corrected for sample dilution and moisture content by the laboratory.
- Indicates the compound or analyte was analyzed for and not detected in the sample. Due to a minor QC deficiency identified during the data validation, the associated quantitation limit is an estimate.
- J Indicates the compound or analyte was analyzed for and detected. Due to a minor QC deficiency identified during the data validation, the associated concentration is an estimate, but the data are usable for decision-making purposes.
- BJ Applied to inorganic analyses only. Indicates the analyte concentration was greater than the IDL but less than the CRDL and is considered an estimated value.
- R Indicates the compound or analyte was analyzed for, detected, and due to an identified major QC deficiency, the data are unusable.
- UR Indicates the compound or analyte was analyzed for and not detected in the sample. Additionally, the data is unusable due to an identified major QC deficiency.
- NJ Indicates presumptive evidence of a compound at an estimated value.

 The data may not be valid for some specific applications (i.e., usable for decision-making purposes).
- Indicates presumptive evidence of a compound. The data may not be valid for some specific applications (i.e., usable for decision-making purposes).

Appendix 2
Summary of Data Qualification

METALS DATA QUALIFICATION SUMMARY*

SDS Roft46	A PARTY OF THE SECOND CONTRACTOR OF THE SECOND	#Rieject, 126-F2	
COMMENTS:			
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON
Silicon Lead	J	All	RPD
Copper Antimony	J	All	MS recovery

^{* -} The Qualified Data Summary Table includes laboratory applied "U" qualifiers not specifically identified here. The laboratory applied "U" qualifiers are included to minimize misinterpretation of results contained in the table.

Appendix 3

Qualified Data Summary and Annotated Laboratory Reports

Project: WASHINGTON CLOSURE HANFORD									
Lab: LLI	1	K0146				_,			
Sample Number		J10VC1		J10VC2		J10VC3			
Remarks				Duplicate		E. Blank			
Sample Date		12/14/05	12/14/05		12/14/05				
Inorganics	RQL	Result	Q	Result	<u>. – </u>	Result		Result	Q
Silver	0.2	0.14	Ū	0.14	U	0.14	U		
Aluminum	L	6290		5860		47.2			
Arsenic	10	3.0		2.9		0.33			\prod
Boron		5.5	Г	5.6		0.26	U		Π
Barium	2	82.4		82.3		1.3			
Beryllium		0.30		0.28		0.01	U		Т
Calcium		6730		6510		24.2			Τ
Cadmium	0.2	0.07	U	0.07	υ	0.07	U		T
Cobalt		6.1		6.2		0.12	Ü		Т
Chromium	1	10.9		10.4		0.19	Γ		
Соррег		16.8	J	17.4	J	0.19	J		Т
Iron		17500		16400		311			1
Mercury	0.2	0.01	Ū	0.02	د	0.02	U		Т
Potassium		1210	\Box	1120		19.6			1
Magnesium		3930		3790		7.4			Τ
Manganese		274		267		4.3			
Molybdenum		0.38		0.39		0.13	U		
Sodium		158		157		6.3			
Nickel		10.3		10.3		0.13			
Lead	5	17.2	J	11.7	J	0.40	J		
Antimony		0.48	J	0.40	IJ	0.39	UJ		
Selenium	1.	0.37		0.36	Ų	0.35	U	Ī.,	
Silicon		286	J	346	J	54.8	J		L
Vanadium		41.6		38.7		0.16			
Zinc	1	76.9		63.7		1.5			T

INORGANICS DATA SUMMARY REPORT 12/29/05

CLIENT: TNU-HANFORD RC-032

LVL LOT #: 0512L942

WORK ORDER: 11343-606-001-9999-00

		•			REPORTING	DILUTION
Sample	SITE ID	ANALYTE	Result	units	LIMIT	FACTOR
	250022265232559994 = FE	医甲基酚基邻异苯苯酚可以甲甲基苯基苯基基金金	******	222224	****	
-001	J10VC1	Silver, Total	0.14 u	MG/KG	0.14	1.0
		Aluminum, Total	6290	MG/KG	1.8	1.0
		Arsenic, Total	3.0	NG/KG	0.34	1.0
		Boron, Total	5.5	MG/KG	0.27	1.0
		Sarium, Total	82.4	MG/KG	0.02	1.0
	•	Beryllium, Total	0.30	NG/KG	0.01	1.0
		Calcium, Total	6730	MG/KG	1.2	1.0
	•	Cadmium, Total	0.07 u	MG/KG	0.07	1.0
		Cobalt, Total	6.1	MG/KG	0.12	1.0
	,	Chromium, Total	10.9	NG/KG	0.16	1.0
٠		Copper, Total	16.0 3	MG/KG	0.12	1.0
		Iron, Total	17500	MG/KG	3.2	N 1.0
		Mercury, Total	0.01 u	MG/KG	0.01	1.0
	•	Potessium, Total	1210	NG/KG	5.6	1.0
		Magnesium, Total	3930	NG/KG	1.4	1.0
		Manganese, Total	274	MG/KG	0.02	1.0
		Molybdenum, Total	0.38	NG/KG	0.13	1.0
		Sodium, Total	158	MG/KG	0.17	1.0
		Nickel, Total	10.3	MG/XG	0.13	, 1.0
		Lead, Total	17.2 T	MG/KG	0.31	1.0
		Antimony, Total	0.48 J	NG/KG	0.40	1.0
		Selenium, Total	0.37	MG/KG	0.36	U 1.0
		Silicon, Total	286 💃	MG/KG	0.82	J 1.0
		Vanadium, Total	41.6	MG/KG	0.09	1.0
		Zinc, Total	76.9	NG/KG	0.05	1.0

2/29/04

INORGANICS DATA SUNMARY REPORT 12/29/05

CLIENT: TNU-HANFORD RC-032

WORK ORDER: 11343-606-001-9999-00

LVL LOT #: 0512L942

		•			REPORTING	DILUTION
Sample	SITE ID	ANALYTE	rrsult	UNITS	LIMIT	FACTOR
			*******		*****	******
-002	J10VC2	Silver, Total	0.14 u	HG/KG	0.14	1.0
		Aluminum, Total	5860	MG/KG	1.8	1.0
		Arsenic, Total	2.9	MG/KG	0.34	1.0
		Boron, Total	5.6	MG/KG	0.27	1.0
		Barium, Total	82.3	MG/KG	0.02	1.0
		Beryllium, Total	0.28	MG/KG	0.01	1.0
		Calcium, Total	6510	MG/KG	1.2	1.0
	•	Cadmium, Total	0.07 u	MG/KG	0.07	1.0
		Cobalt, Total	6.2	MG/KG	0.12	1.0
		Chromium, Total	10.4	MG/KG	0.16	1.0
		Copper, Total	17.4 J	MG/KG	0.12	1.0
		Iron, Total	16400	MG/KG	3.2	1.0
		Mercury, Total	0.02 u	MG/KG	0.02	1.0
		Potassium, Total	1120	ма/ка	\$.5	1.0
		Magnesium, Total	3790	MG/KG	1.3	1.0
		Manganese, Total	267	MG/KG	0.02	1.0
		Molybdenum, Total	0.39	MG/KG	0.13	1.0
		Sodium, Total	157	MG/KG	0.17	1.0
	•	Nickel, Total	10.3	MG/KG	0.13	1.0
		Lead, Total	11.7 🎖	MG/XG	0.31	1.0
	•	Antimony, Total	0.40 u	MG/KG	0.40	1.0
	•	Selenium, Total	0.36 u	MG/KG	0.36	1.0
		Silicon, Total	346 J	NG/KG	0.81	1.0
		Vanadium, Total	36.7	MG/KG	0.09	1.0
	•	Zinc, Total	63.7	NG/KG	0.05	1.0

2/25/02

INORGANICS DATA SUMMARY REPORT 12/29/05

CLIENT: TNU-HANFORD RC-032

LVL LOT #: 0512L942

WORK ORDER: 11343-606-001-9999-00

					REPORTING	DILUTION
SAMPLE	SITS ID	ANALYTE	RESULT	UNITS	LIMIT	PACTOR
****	************		****	32222		工产这里定差是包
003	J10VC3	Silver, Total	0.14 u	ng/kg	0.14	1.0
		Aluminum, Total	47.2	MG/KG	1.0	1.0
		Arsenic, Total	0.33 u	NG/KG	0.33	1.0
•		Boron, Total	0.26 u	NG/KG	0.26	1.0
		Barium, Total	1.3	MG/KG	0.02	1.0
		Beryllium, Total	0.01 u	NG/KG	0.01	1.0
		Calcium, Total	24.2	MG/KG	1.2	1,0
		Cadmium, Total	0.07 u	MG/KG	0.07	1.0
		Cobalt, Total	0.12 u	MG/KG	0.12	1.0
		Chromium, Total	0.19	MG/KG	0.16	1.0
		Copper, Total	0.19 3	MG/KG	0.12	1.0
		Iron, Total	311	MG/KG	3.1	1.0
		Mercury, Total	0.02 u	MG/KG	0.02	1.0
		Potassium, Total	19.6	MG/XG	5.4	1.0
•		Nagnesium, Total	7.4	MG/KG	1.3	1.0
		Manganese, Total	4.3	NG/KG	0.02	1.0
		Nolybdenum, Total	0.13 u	ис/ка	0.13	1.0
		Sodium, Total	6.3	MG/KG	0.17	1.0
		Nickel, Total	0.13 u	MG/KG	0.13	1.0
		Lead, Total	0.40 J	NG/XG	0.30	1.0
		Antimony, Total	0.39 u 🧻	∫ис/кс	0.39	1.0
		Selenium, Total	0.35 u	MG/KG	0.35	1.0
		Silicon, Total	54.8 J	NG/XG	0.80	1.0
•		Vanadium, Total	0.16	ма/ка	0.09	1.0
		Zinc, Total	1.5	NG/KG	0.05	1.0

2/27/50

Appendix 4

Laboratory Narrative and Chain-of-Custody Documentation

Analytical Report

Client: TNU-HANFORD RC-032

LVL#: 0512L9420146 SDG/SAF#: AF /RC-032 W.O.#: 11343-606-001-9999-00

Date Received: 12-16-05

METALS CASE NARRATIVE

- 1. This narrative covers the analyses of 3 soil samples.
- 2. The samples were prepared and analyzed in accordance with methods checked on the attached glossary.
- 3. All analyses were performed within the required holding times.
- 4. All results presented in this report are derived from samples that met LvLI's sample acceptance policy.
- 5. All Initial and Continuing Calibration Verifications (ICV/CCVs) were within the 90-110% control limits.
- 6. All Initial and Continuing Calibration Blanks (ICB/CCBs) were within control limits (less than the PQL).
- 7. The preparation/method blank for 1 analyte was outside method criteria. {less than the Practical Quantitation Limit (3X the IDL), MB value less than 5% of the RCRA limit, or samples greater than 20X MB value}. Refer to the Inorganics Method Blank Data Summary.
 - a). The MB result for Sodium was greater than the Practical Quantitation Limit (PQL) {3 x the (IDL) Instrument Detection Level} and sample J10VC3 read less than 20 times the MB concentration. However, no corrective action criteria for MBs were provided in SW846 method 6010B. The sample results were reported herein "uncorrected" for the levels found in the MB.
- 8. All ICP Interference Check Standards were within control limits.
- 9. All laboratory control samples (LCS) were within the 80-120% control limits with the exception of Silicon (73.9%). Refer to the Inorganics Laboratory Control Standards Report.
- The matrix spike (MS) recoveries for 5 analytes were outside the 75-125% control limits. Refer to the Inorganics Accuracy Report.

The results presented in this report relate only to the analytical testing and conditions of the samples at receipt and during storage. All pages of this report are integral parts of the analytical data. Therefore, this report should only be reproduced in its entirety of pages.

11 For analytes where the ICP MS is out-of-control, a post-digestion MS (PDS) and serial dilution are performed. A serial dilution is performed for Mercury. A PDS was prepared at meaningful concentration level for the following analytes:

•		<u>PDS</u>	<u>PDS</u>
Sample ID	Element	Concentration (ppb)	% Recovery
J10VC1	Aluminum	20,000	92.4
	Antimony	200	93.4
	Соррег	200	92.4
	Iron	20,000	89.3
4	Zinc	200	89.1

- 12. The duplicate analyses for 9 analytes were outside the 20% Relative Percent Difference (RPD) control limits. Refer to the Inorganics Precision Report.
- 13. For the purposes of this report, the data has been reported to the Instrument Detection Limit (IDL). Values between the IDL and the Practical Quantitation Limit (PQL) are acquired in a region of less-certain quantification.
- 14. I certify that this sample data package is in compliance with SOW requirements, both technically and for completeness, other than the conditions detailed above. Release of the data contained in this hard-copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature.

Iain Daniels

Laboratory Manager

Lionville Laboratory Incorporated

gmb/m12-942

12 30 10 8

Appendix 5 Data Validation Supporting Documentation

INORGANIC ANALYSIS DATA VALIDATION CHECKLIST

<u>V</u> ALIDATION LEVEL;	Α	В	(c)	ď		E
PROJECT: \	58-E-5		DATA PACKAG	E: Ka	0146	
VALIDATOR:	TLI	LAB: LL	Ţ		2/23/60	, , ,
			SDG:	c0/46		
		ANALYSES	PERFORMED			=
SW-846/ICP	SW-846/GFAA	755	SW-846 Cyanide			
			Cymnac			
SAMPLES/MAT	RIX					
JIOUCI	71010	2 J10	5 J J C 3			
	<u></u>	·				
1						
	-				Sac	/
Technical verificat	ion documentation p	oresent?	CASE NARRATIV	***************************************	500 Yes(-0
Technical verificat	ion documentation p	oresent?		***************************************		-2
Technical verificat Comments: 2. INSTRUE	ion documentation p	IANCE AND CAL	***************************************	els D and E)	Yes((No) N/
Technical verificat Comments: 2. INSTRUI Initial calibrations	ion documentation p MENT PERFORM performed on all ins	IANCE AND CAL	IBRATIONS (Lev	els D and E)	Yes(No N
Technical verificat Comments: 2. INSTRUI Initial calibrations Initial calibrations	MENT PERFORM performed on all ins	IANCE AND CAL	IBRATIONS (Lev	els D and E)	Yes(No N/
Technical verificat Comments: 2. INSTRUI Initial calibrations Initial calibrations ICP interference ch	MENT PERFORM performed on all insacceptable?	IANCE AND CAL	IBRATIONS (Lev	els D and E)	Yes	No N/ No N/ No N/
2. INSTRUI Initial calibrations ICP interference ch	MENT PERFORM performed on all insacceptable?	IANCE AND CAL struments?	IBRATIONS (Lev	els D and E)	Yes (No N/ No N/ No N/ No N/ No N/
2. INSTRUI Initial calibrations ICP interference ch ICV and CCV checking in the company of the c	MENT PERFORM performed on all insacceptable? ecks acceptable?	IANCE AND CAL struments?	IBRATIONS (Lev	els D and E)	YesYesYesYesYesYes	No N/ No N/ No N/ No N/ No N/ No N/
2. INSTRUITING INTERIOR INTERI	MENT PERFORM performed on all insacceptable? ecks acceptable?	IANCE AND CAL struments?	IBRATIONS (Lev	els D and E)	YesYesYesYesYesYesYesYes	No N/
2. INSTRUI Initial calibrations ICP interference ch ICV and CCV check ICV and CCV check ICV and CCV check Standards traceable Standards expired?	MENT PERFORM performed on all insacceptable? ecks acceptable? eks performed on all eks acceptable?	IANCE AND CAL struments?	IBRATIONS (Lev	els D and E)	YesYesYesYesYesYesYesYesYes	No N/

INORGANIC ANALYSIS DATA VALIDATION CHECKLIST

3. BLANKS (Levels B, C, D, and E)	
ICB and CCB checks performed for all applicable analyses? (Levels D, E)	Yes No Was
ICB and CCB results acceptable? (Levels D, E)	Yes No (V/A)
Laboratory blanks analyzed?	
Laboratory blank results acceptable?	V2 No N/A
Field blanks analyzed? (Levels C, D, E)	Ye No N/A
Field blank results acceptable? (Levels C, D, E)	Yes(Ng) N/A
Transcription/calculation errors? (Levels D, E)	Yes No 🗱
Comments:	
FB - al, barrom, Calcium, chromium, copper, ir mangeness, Sodium, Mickel, lood, Silicon, Vanadium, -	on, potesson, massessus
4. ACCURACY (Levels C, D, and E)	
MS/MSD samples analyzed?	<u> </u>
MS/MSD results acceptable?	
MS/MSD standards NIST traceable? (Levels D, E)	テリ
MS/MSD standards expired? (Levels D, E)	
LCS/BSS samples analyzed?	~~
LCS/BSS results acceptable?	
Standards traceable? (Levels D, E)	
Standards expired? (Levels D, E)	
Transcription/calculation errors? (Levels D, E)	
Performance audit sample(s) analyzed?	
Performance audit sample results acceptable?	Yes No ÑÚÀ
Performance audit sample results acceptable? Comments: Comper 136,8% J cell 7 ms and my 40,2% J all	record no PHS
	1
	<u> </u>

INORGANIC ANALYSIS DATA VALIDATION CHECKLIST

5. PRECISION (Levels C, D, and E)	1 100
Duplicate RPD values acceptable?	We No N/A
Duplicate results acceptable?	Yes No N/A
MS/MSD standards NIST traceable? (Levels D, E)	Yes No N/A
MS/MSD standards expired? (Levels D, E)	Yes No N/A
Field duplicate RPD values acceptable?	Yes No MA
Field split RPD values acceptable?	Yes No N/A
Transcription/calculation errors? (Levels D, E)	Yes No WA
Comments: Red 70.9 - J Silica 34.790 - J	•
Silver 34.790-5	
6. ICP QUALITY CONTROL (Levels D and E)	
ICP serial dilution samples analyzed?	Yes No N/A
ICP serial dilution %D values acceptable?	Yes No N/A
ICP post digestion spike required?	Yes No N/A
ICP post digestion spike values acceptable?	Yes No N/A
Standards traceable?	Yes No N/A
	ros rad ravel
Standards expired?	1 1
	Yes No N/A
Standards expired?	Yes No N/A
Standards expired? Transcription/calculation errors?	Yes No N/A
Standards expired? Transcription/calculation errors?	Yes No N/A
Standards expired? Transcription/calculation errors?	Yes No N/A

INORGANIC ANALYSIS DATA VALIDATION CHECKLIST

7.	FURNACE AA QUALITY CONTROL (Levels D and E)			
Dupli	licate injections performed as required?	Yes	No/	N/A
Dupli	licate injection %RSD values acceptable?	Yes	No	N/A
Analy	lytical spikes performed as required?	Yes	No	N/A
Analy	lytical spike recoveries acceptable?	Yes	No	N/A
Stand	dards traceable?	Yes	No	N/A
Stand	dards expired?	Yes	No	N/A
MSA	A performed as required?	Yes	No	N/A
	A results acceptable?			
Trans	scription/calculation errors?	Yes	Nd	N/A
Comr	ments:			<u> </u>
8.	HOLDING TIMES (all levels)	20		
Samp	ples properly preserved?		No	N/A
Samp	ple holding times acceptable?		No	N/A
Comr	ments:			
·				
			<u>-</u>	

INORGANIC ANALYSIS DATA VALIDATION CHECKLIST

9. RESULT QUANTITATION AND DETECTION LIMITS (all levels)			
Results reported for all requested analyses?	Yes	No	N/A
Rresults supported in the raw data? (Levels D, E)	Yes	No (N/A
Samples properly prepared? (Levels D, E)	¥eş	No (N/A
Detection limits meet RDL?	. Yes	No	N/A
Transcription/calculation errors? (Levels D, E)	Yes	No	(N) _A
Comments:			` '
			<u> </u>

Appendix 6

Additional Documentation Requested by Client

INORGANICS METHOD BLANK DATA SUMMARY PAGE 12/29/05

CLIENT: TNU-HANPORD RC-032

LVL LOT #: 05126942

WORK ORDER: 11343-606-001-9999-00

			•		reporting	DILUTION
Sample	SITE ID	ANALYTE	RESULT	UNITS	LIMIT	PACTOR
2524××		**************	******	****	******	
BLANK1	05L0752-MB1	Silver, Total	0.14 u	MG/KG	0.14	1.0
		Aluminum, Total	1.8 u	MG/KG	1.8	1.0
		Armenic, Total	0.34 u	MG/KG	0.34	1.0
		Boron, Total	0.27 ц	MG/KG	0.27	1.0
		Barium, Total	0.06	MG/KG	0.02	1.0
		Beryllium, Total	0.01 u	MG/KG	0.01	1.0
		Calcium, Total	1.9	MG/KG	1.2 .	1.0
		Cadmium, Total	0.07 u	MG/KG	0.07	1.0
	•	Cobalt, Total	0.12 u	MG/KG	0.12	1.0
		Chromium, Total	0,16 u	MG/KG	0.16	1.0
		Copper, Total	0.12 u	MG/KG	0.12	1.0
		Iron, Total	3.2 u	MG/KG	3.2	1.0
	·	Potassium, Total	5.5 u	MG/KG	5.5	1.0
		Magnesium, Total	1.4 u	MG/KG	2.4	1.0
	· ·	Manganese, Total	0.06	MG/KG	0.02	1.0
		Molybdenum, Total	0.13 u	NG/KG	0.13	1.0
		Sodium, Total	0.97	MG/KG	0.17	1.0
		Nickel, Total	0.13 u	MG/KG	0.13	1.0
		Lead, Total	0.31 u	MG/KG	0.31	1.0
		Antimony, Total	0.40 u	MG/KG	0.40	1.0
		Selenium, Total	0.36 u	NG/KG	0.36 .	1.8
	0	Silicon, Total	0.82 u	NG/KG	0.82	1.0
		Vansdium, Total	0.09 u	NG/KG	0_09	1.0
		Zinc, Total	0.05 u	MG/KG	0.05	1.0
BLANK1	05C0289-MB1	Hercury, Total	0.02 u	MG/KG	0.02	1.0

INORGANICS ACCURACY REPORT 12/29/05

CLIENT: TNU-HANFORD RC-032

LVL LCT #: 0512L942

MORK ORDER: 11343-606-001-9999-00

		•	SPIKED	INITIAL	SPIKED		DILUTION
Sample	SITE ID	ANALYTE	SAMPLE	result	TRUOMA	\$RECOV	Pactor (SPK)
	************	***********	*****	2952222		====	
-001	J10VC1	Silver, Total	4.7	0.14u	5.1	92.2	1.0
		Aluminum, Total	6960	6290	203	327.5*	1.0
		Arsenic, Total	193	3.0	203	93.7	1.0
		Boron, Total	93.9	5.5	101	87.3	1.0
		Barium, Total	268	82.4	203	91.6	1.0
		Beryllium, Total	5.2	0.30	5.1	96.1	1.0
,	•	Calcium, Total	8920	6730	2530	86.7	1.0
٠.		Cadmium, Total	4.9	0.074	5.1	96.1	1.0
		Cobalt, Total	53.9	6.1	50.6	94.5	1.0
		Chromius, Total	30.2	10.9	20.3	95.1	1.0
		Copper, Total	52.4	16.8	. 25.3	136.6	1.0
		Iron, Total	16800	17500	101	-690. *	1.0
		Mercury, Total	0.17	0:01u	0,14	115.3	1.0
	•	Potassium, Total	3540	1210	2530	91.9	1.0
•		Magnesium, Total	6320	3930	2530	94.3	1.0
		Hanganese, Total	315	274	50.6	81.0*	1.0
	•	Molybdenum, Total	92.5	0.38	101	90.9	1.0
		Sodium, Total	2540	158	2530	94.2	1.0
		Nickel, Total	58.7	10.3	50.6	95.7	1.0
	•	Lead, Total	58.4	17.2	50.6	81.4	1.0
		Antimony, Total	20.8	0.48	50.6	40.2	1.0
		Selenium, Total	186	0.37	203	91.5	1.0
		Silicon, Total	367	286	101	80.3	1.0
		Vanadium, Total	86.6	41.6	50.6	88.9	1.0
	•	Zinc, Total	113	76.9	50.6	71.1	1.0

INORGANICS PRECISION REPORT 12/29/05

CLIENT: TNU-HANFORD RC-032

LVL LOT #: 0512L942

WORK ORDER: 11343-606-001-9999-00

	•		INITIAL			DILUTION
SAMPLE	SITE ID	ANALYTE	RESULT	REPLICATE	RPD	FACTOR (REP)
******	***********				*****	
-001RBP	J10VC1	Silver, Total	0.14u	0.14u	NC	1.0
		Aluminum, Total	6290	4960	23.7	1.0
		Arsenic, Total	3.0	3.1	3.3	1.0
		Boron, Total	5.5	4.B	13.6	1.0
		Barium, Total	82.4	74.1	10.6	1.0
		Beryllium, Total	0.30	0.27	11.7	1.0
		Calcium, Total	6730	654D	2.8	1.0
		Cadmium, Total	0.07u	0.12	XC 20 68	1.0
		Cobalt, Total	.6.1	5.3	14.0	1.0
		Chromium, Total	10.9	8.4	25.9	1.0
	•	Copper, Total	16.8	14.7	13.3	1.0
		Iron, Total	17500	14400	19.7	1.0
		Mercury, Total	0.01u	0.014	NC	1.0
		Potassium, Total	1210	1010	17.6	1.0
		Magnesium, Total	3930	3300	17.6	1.0
		Manganese, Total	274	246	11.0	1.0
	•	Molybdenum, Total	0.38	0.20	63.9	1.0
	•	Sodium, Total	158	130	19.5	1.0
1		Nickel, Total	10.3	9.0	13.5	1.0
	•	Lead, Total	17.2	36.1	70.9	1.0
		Antimony, Total	0.48	0 . 40u	16 3 00	1.0
		Selenium, Total	0.37	0.36ц	10 20b	1.0
,	•	Bilicon, Total	286	414	36.7	1.0
•		Vanadium, Total	41.6	34.8	17.8	1.0
		Zinc, Total	76.9	57.2	29.4	1.0
	÷				140	129/00

INORGANICS LABORATORY CONTROL STANDARDS REPORT 12/29/05

CLIENT: TNU-HANFORD RC-032

LVL LOT #: 0512L942

WORK ORDER	2: 11343	-605-001	-9999-00
------------	----------	----------	----------

			SPIKED	SPIKED		
			SAMPLE	TRUONA	UNITS	*RECOV
SAMPLE	SITE ID	ANALYTE			OMTID	TRECOT
*****	公司 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基					
LC81	05L0752-LC1	Silver, LCS	48.8	50.0	•	97.6
		Aluminum, LCS	482	500	MG/KG	96.3
		Arsenic, LCS	954	1000	MG/KG	95.4
		Boron, LCS	478	500	MG/KG	95.5
		Berium, LCS	480	500	MG/KG	56.0
		Beryllium, LCS	25.2	25.0	NG/KG	100.8
		Calcium, LCS	2510	2500	MG/KG	100.5
		Cadmium, LCS	25.4	25.0	MG/KG	101.6
	•	Cobalt, LCS	253	250	MG/KG	101.3
		Chromium, LCS	51.0	50.0	MG/KG	102.0
		Copper, LCS	122	125	MG/KG	97.4
		Iron, ICS	603	500	MG/KG	101.6
		Potassium, LCS	2260	2500	MG/KG	90.4
	•	Magnesium, LCS	2460	2500	MG/KG	98.3
	•	Manganese, LCS	76.3	75.0	MG/KG	101.7
	•	Molybdenum, LCS	602	500	MG/KG	100.4
	•	Sodium, LCS	2330	2500	HG/KG	93.4
		Nickel, LCS	200	200	MG/KG	100.1
		Lead, LCS	250	250	MG/KG	100.1
	•	Antimony, LCS	288	300	MG/KG	95.8
		Selenium, LCS	920	1000	MG/KG	92.0
	•	Silicon, LCS	370	500	MG/KG	73.9
		Vanadium, LCS	248	250	MG/KG	99.3
		Zinc, LCS	98.5	100	MG/KG	98.5
LCS1	05C0288-LC1	Mercury, LCS	6.5	6.2	MG/KG	104.2

Date:

1 March 2006

To:

Washington Closure Hanford Inc. (technical representative)

From:

Project:

100F Remaining Sites Burial Grounds - Soil - Full Protocol - Waste Site

126-F-2

Subject: Wet Chemistry - Data Package No. K0146-LLI

INTRODUCTION

This memo presents the results of data validation on Data Package No. K0146 prepared by Lionville Laboratory Inc. (LLI). A list of samples validated along with the analyses reported and the method of analysis is provided in the following table.

		ing: Martele 178	E V/#\reation\	DESCRIPTION OF THE
J10VC1	12/14/05	Soil	С	See note 1
J10VC2	12/14/05	Soil	С	See note 1

^{1 -} Chromium VI by 7196A and total petroleum hydrocarbons by 9071/418.1.

Data validation was conducted in accordance with the Washington Closure Hanford (WCH) validation statement of work and the 100 Area Remedial Action Sampling and Analysis Plan (DOE/RL-96-22, Rev. 4, February 2005). Appendices 1 through 6 provide the following information as indicated below:

Appendix 1. Glossary of Data Reporting Qualifiers

Appendix 2. Summary of Data Qualification

Appendix 3. Qualified Data Summary and Annotated Laboratory Reports

Appendix 4. Laboratory Narrative and Chain-of-Custody Documentation

Appendix 5. Data Validation Supporting Documentation

Appendix 6. Additional Documentation Requested by Client

DATA QUALITY PARAMETERS

· Holding Times

Analytical holding times for metals are assessed to ascertain whether the holding time requirements were met by the laboratory. The holding time requirements are as follows: Soil samples must be analyzed within 30 days for chromium VI and 28 days for TPH.

If holding times are exceeded, but not by greater than two times the limit, all associated sample results are qualified as estimates and flagged "J" for detects and "UJ" for non-detects. If holding times are exceeded by greater than two times the limit, all associated detectable sample results are qualified as estimates and flagged "J" and all non-detects are rejected and flagged "UR".

All holding times were acceptable.

Method Blanks

Method Blanks

Method blank analyses are performed to determine the extent of laboratory contamination introduced through sampling, sample preparation and analysis. At least one acceptable method blank analysis must be conducted for every 20 samples. No contaminants should be present in the method blank. All blank results must fall below the contract required detection limit (CRQL) to be acceptable.

All method blank results were acceptable.

Field (Equipment) Blank

No field blanks were submitted for analysis.

· Accuracy

Matrix Spike and Laboratory Control Sample

Matrix spike (MS) and laboratory control sample (LCS) analyses are used to assess the analytical accuracy of the reported data. The matrix spike is used to assess the effect of the matrix on the ability to accurately quantify sample concentrations. Recoveries must fall within the range of 70% to 130%. Samples with a recovery of less than 30% and a sample result below the IDL are rejected and flagged "UR". Samples with a recovery of 30% to 69% and a sample result less than the IDL are qualified "UJ". Samples with a recovery of greater than 130% or less than 70% and a sample result greater than the IDL are qualified as estimates and flagged "J". Finally, for samples with a recovery greater than 130% and a sample result less than the IDL, no qualification is required.

Due to a matrix spike outside QC limits (-110%), all TPH results were qualified as estimates and flagged "J".

All other accuracy results were acceptable.

· Precision

Laboratory Duplicate Samples

Analytical precision is expressed by the relative percent differences (RPD) between 00002

the recoveries of matrix spike duplicate (MSD) analyses performed on a sample in the analytical batch. Precision may alternatively be assessed using unspiked duplicate analyses performed on a sample in the analytical batch. If both sample and replicate activities (concentrations) are greater than five times the CRDL and the RPD is less than 30%, no qualification is required. If either activity (concentration) is less than five times the CRDL, the RPD control limit is less than or equal to two times the CRDL. If the RPD is outside the applicable control limit, associated results are qualified as estimated detects or estimated non-detects.

Due to an RPD outside QC limits (41%), all TPH results were qualified as estimates and flagged "J".

All other laboratory duplicate results were acceptable.

Field Duplicate

One set of field duplicates (J10VC1/J10VC2) were submitted for analysis. Field duplicates are analyzed using the same criteria as for laboratory duplicates. The RPD for TPH (83%) was outside QC limits. Under the WCH statement of work, no qualification is required. All other field duplicate results were acceptable.

Analytical Detection Levels

Reported analytical detection levels are compared against the required quantitation limits (RQLs) to ensure that laboratory detection levels meet the required criteria. All analytes met the RQL.

Completeness

Data package K0146 was submitted for validation and verified for completeness. Completeness is based on the percentage of data determined to be valid (i.e., not rejected). The completion percentage was 100%.

MAJOR DEFICIENCIES

None found.

MINOR DEFICIENCIES

The following minor deficiencies were noted:

大大 化二氯甲基乙酰 化异丙基基基基 化氯化物 建铁矿 经国际货运

- Due to a matrix spike outside QC limits (-110%), all TPH results were qualified as estimates and flagged "J".
- Due to an RPD outside QC limits, all TPH results were qualified as estimates and flagged "J".

Data flagged "J" indicates that the associated concentration is an estimate, but under the BHI statement of work, the data may be usable for decision-making purposes. All other validated results are considered accurate within the standard error associated with the methods

REFERENCES

WCH, Contract #20266, Validation Statement of Work, Washington Closure Hanford Incorporated, July 7, 2003.

DOE/RL-96-22, Rev. 4, 100 Area Remedial Action Sampling and Analysis Plan, U.S. Department of Energy, February 2005.

Appendix 1

Glossary of Data Reporting Qualifiers

Qualifiers which may be applied by data validators in compliance with BHI validation SOW are as follows:

- Indicates the compound or analyte was analyzed for and not detected in the sample. The value reported is the sample quantitation limit corrected for sample dilution and moisture content by the laboratory.
- UJ Indicates the compound or analyte was analyzed for and not detected in the sample. Due to a minor QC deficiency identified during the data validation, the associated quantitation limit is an estimate.
- Indicates the compound or analyte was analyzed for and detected. Due to a minor QC deficiency identified during the data validation, the associated concentration is an estimate, but the data are usable for decision-making purposes.
- BJ Applied to inorganic analyses only. Indicates the analyte concentration was greater than the IDL but less than the CRDL and is considered an estimated value.
- Indicates the compound or analyte was analyzed for, detected, and due to an identified major QC deficiency, the data are unusable.
- UR Indicates the compound or analyte was analyzed for and not detected in the sample. Additionally, the data is unusable due to an identified major QC deficiency.
- NJ Indicates presumptive evidence of a compound at an estimated value. The data may not be valid for some specific applications (i.e., usable for decision-making purposes).
- Indicates presumptive evidence of a compound. The data may not be valid for some specific applications (i.e., usable for decision-making purposes).

Appendix 2
Summary of Data Qualification

WET CHEMISTRY DATA QUALIFICATION SUMMARY*

SDG KC 46, SES		Popol 4265529	HAGRIA OF 1
COMMENTS:			
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON
TPH	J	All	MS recovery
TPH	J	All	RPD

^{* -} The Qualified Data Summary Table includes laboratory applied "U" qualifiers not specifically identified here. The laboratory applied "U" qualifiers are included to minimize misinterpretation of results contained in the table.

Qualified Data Summary and Annotated Laboratory Reports

Project: WASHINGTON CLOSUI	RE HAN	FORD			
Lab: LLI	SDG: K0146				
Sample Number	J10VC1		J10VC2		
Remarks			Duplicate		
Sample Date		12/14/05		12/14/05	
Wet Chemistry	RQL	Result	Q	Result	Q
Chromium VI	0.5	0.21	บ	0.21	U
Total Petroleum Hydrocarbons	5	676	J	1650	J

INORGANICS DATA SUMMARY REPORT 01/04/06

CLIENT: TNUHANFORD RC-032 K0146 WORK ORDER: 11343-606-001-9999-00 LVL LOT #: 0512L942

SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	REPORTING LIMIT	DILUTION FACTOR
		350ccpc			*****	M = = 2 d + p y
-001	J10VC1	* Solids	96.8	¥	0.01	1.0
		Chromium VI	ىز 0.21	MG/KG	0.21	1.0
	•	Petroleum Hydrocarbons	676]	MG/KG	138	1.0
-002	J10VC2	* Solids	97.3	•	0.01	1.0
		Chromium VI	0.21 y	MG/KG	0.21	1.0
		Petroleum Hydrocarbons	1650	MG/KG	274	2.0
-003	J10VC3	* Solids	100		0.01	1.0

p 2/2/0

Laboratory Narrative and Chain-of-Custody Documentation

Analytical Report

Client: TNU-HANFORD RC-032 K0146

LVL#: 0512L942

Date Received: 12-16-05

W.O.#: 11343-606-001-9999-00

INORGANIC NARRATIVE

1. This narrative covers the analyses of 3 soil samples.

2. The samples were prepared and analyzed in accordance with the methods checked on the attached glossary.

LvLI is NELAP accredited by the state of Pennsylvania and holds over 20 additional state accreditations. For a complete list of accrediting authorities and the corresponding analytes/methods, please contact your Project Manager.

- 3. Sample holding times as required by the method and/or contract were met.
- 4. The results presented in this report are derived from samples that met LvLI's sample acceptance policy.
- 5. The method blanks were within the method criteria.
- 6. The Laboratory Control Samples (LCS) were within the laboratory control limits.
- 7. The matrix spike (MS) recovery for Chromium VI was within the 75-125% control limits however MS recovery for Petroleum Hydrocarbons (PHC) was below the control limits that may be attributed to low spike level relative the background concentration of the target analyte.
- 8. The replicate analyses for Chromium VI and Percent Solids were within the 20% Relative Percent Difference (RPD) control limit however replicate analysis for PHC was outside the control limit that may be attributed to sample inhomogeneity.
- 9. Results for solid samples are reported on a dry weight basis.
- 10. I certify that this sample data package is in compliance with SOW requirements, both technically and for completeness, other than the conditions detailed above. Release of the contained in this hard copy package has been authorized by the Laboratory Manager or a designee, as verified by the following signature.data

Iain Daniels

Laboratory Manager

Lionville Laboratory Incorporated

njp\i12-942

The results presented in this report relate to the analytical testing and conditions of the samples upon receipt and during storage. All pages of this report are integral parts of the analytical data. Therefore, this report should only be reproduced in its entirety of 11 pages.

1/9/04 Date

Washington Clos	ure Hanford	C	CHAIN OF CUSTODY/SAMPLE ANALYSIS REQUEST					RC-032-001 Page 1			of 1		
Collector R.T. Coffman			Company Contact Telephone No. Project Coordinator R.T. Coffman 528-6409 KESSNER, JH				Price Code	8K	Data Tı	DROJBERT.			
Project Designation 100-F Remaining Sites Bu	rial Grounds - Soil Fult I		ling Location 5-F-2 Clearwells Stockpi	le area				SAF No. RC-032		Air Qualit	y 🗆	15	7460
ice Chest No. ERC -	01-027		Logbook No. L-1174		COA R126F220	000		Method of Sh FedEx	ipment				
Shipped To EBERLINE SERVICES	LIONVILLE	Offsi	e Property No.	0601	36			Bill of Ledia	z/Air Bill	ina Se	e OSP	<u>ر</u>	
POSSIBLE SAMPLE HA	CARDS/REMARKS			,		1	<u> </u>		1			Τ	
NA			Preservation	Name	Coal 4C	Coal 4C	Coal 4	N.	Non	c None	None	Cool 4C	
Special Handling and/or	Storage		Type of Container	a.G	■G	De	aG		•	Da.	#G	aG	
Cool 4 deg C	*		Ne. of Container(s)	!	1	ı			1	l l	l i		1
		·	Volume 25	500 ml 500 ml	60mL	60mL	L20m	L 500mL	6000	60mL	60mL	125mL	
	SAMPLE ANA	ilysis	,	See item (1) in Special Instructions.	Chromium Hex - 7196	PCB4 - 8082	Semi-VO \$270A (1		Tritige	isotopic Plutosium	Gross Bets	TPH (Total) - 418.1	
·.					, 					Ta			
Sample No	Matrix *	Sample Date	Sample Time	il diese	E S			Lilianis					
J10VC1	SOIL	12/14/05	0935	<u> </u>	X	X	X					X	
J10VC2	SOIL	12 14 0	0935	X	_X_	Χ	X				Λ.	X	T .
110AC3	SOIL	12/14/0	5 0935	X			X						
	·· .			<u> </u>	ļ								
CIVIN ON POSSESS		1											
CHAIN OF POSSESS Relinquished By/Removed From	Date/Time (6)	Sign/Prin	· · · · · · · · · · · · · · · · · · ·	ate/Time (63	SPEC	IAL INSTR	UCTIO	NS		•			Matrix *
RT CIFFMAN/R	Collina B/M	16- Reser	2 3728	12/14/0	(I) K	CP Metals - 60	10 (Client	List) (Ahminum	Antimony	, Arsenic, Barium,	Beryllian, Bon	м,	S=Goil SE#Seciment
Relinquished By/Removed From	Date/Time	Received By/Sig	red In D	ale/Time //	/5 Nicke	il, Potassimo, S	elenium, S	Silicon, Silver, Sc	dium. Vasa	l, Magnesium, Mar dium, Zine] : Men	eury - 7470 - (C	V)	SO-Solid SI-Simige
Refer 2C 3728 Relinquished By/Removed From	12-15-05 111 Date(Time 111			/2-/5-0. ate/Time	(2) (2) Europ	ianuna Spectro nium-155); Gar	вовру (ТС шив Spec	'L List) (Cesium- - Add-on (Silver	137, Cobali -108 metasi	t-60, Europium-15; table}	2, Europium-154	.	W-Water O-OE
RZ Steffler 1.2.A	12-15-6	~ 1 ~ 2	X		·	-						. •	A=Air DS=Dress Soli DL=Dress Liq
Relinquished By/Removed From		Receive By Sto	red by D	sto/lime	Perso	onaci not av	ailable to	•		* n		•	T=Tiens
Relinquished By/Removed From	12-V ₀₋₀₅ / 09 Date/Time	Received By Sto		205 CO) ale/Time		inquish samp # 20 on /2	les from . 15 .	3728 P.S			•		L=Liquid V=Vegetation X=Odor
Relinguished By/Removed From	Date/Time	Received By/Sto	and for	ate/Time			-						1
Menniquencu by Acutived Fight								•					ļ.
LABORATORY Received SECTION	Ву			Tit	le .						C	ate/Time	
PINAL SAMPLE Disposal DISPOSITION	Method	<u> </u>	· · · · · · · · · · · · · · · · · · ·			Dispo	sed By				ī	ate/Time	
CLU FF A44 (AAAAAAAA				 -				<u>. </u>		- · · · · · · · · · · · · · · · · · · ·			

Data Validation Supporting Documentation

GENERAL CHEMISTRY ANALYSIS DATA VALIDATION CHECKLIST

LEVEL:				Į.	
PROJECT:	126-F72		DATA PACKAG	GE: KOK	{ 6
VALIDATOR:	· ·	LAB: L	LT	DATE: 2/2	-3/06
			SDG:	20146	
		ANALYSE	S PERFORMED		· · · · · · · · · · · · · · · · · · ·
Anions/IC	тос	тох	TPH-418.1	Oil and Grease	Alkalinity
Ammonia	BOD/COD	Chloride	Chromium-VI)	pН	NO ₃ /NO ₂
Sulfate	TDS	TKN	Phosphate		
CANDI ECO (A	MD YV				
SAMPLES/MA		Figure 3		<u> </u>	· · · · · · · · · · · · · · · · · · ·
3,6	001	TIOUCZ			
				501	
Technical verific			CASE NARRATIV	VE.	6
Technical verific Comments: 2. INSTR Initial calibration	ation documentation UMENT PERFOR Is performed on all i	MANCE AND Canstruments?	ALIBRATIONS (Le	VE vels D and E)	Yes No N/A
Technical verific Comments: 2. INSTR Initial calibration Initial calibration	umentation Ument Performed on all is acceptable?	MANCE AND Canstruments?	ALIBRATIONS (Le	VE vels D and E)	Yes No N/A
Technical verific Comments: 2. INSTRI Initial calibration Initial calibration ICV and CCV ch	UMENT PERFOR as performed on all it as acceptable?	MANCE AND Canstruments?	ALIBRATIONS (Le	vels D and E)	Yes No N/A Yes No N/A Yes No N/A
Technical verific Comments: 2. INSTRI Initial calibration Initial calibration ICV and CCV ch	UMENT PERFOR Is performed on all it is acceptable? ecks performed on a	MANCE AND Construments?	ALIBRATIONS (Le	vels D and E)	Yes No N/A Yes No N/A Yes No N/A Yes No N/A
Technical verific Comments: 2. INSTR Initial calibration Initial calibration ICV and CCV ch ICV and CCV ch Standards traceal	UMENT PERFOR Is performed on all it is acceptable? ecks performed on a	MANCE AND Canstruments?	ALIBRATIONS (Le	vels D and E)	Yes No N/A
Technical verific Comments: 2. INSTR Initial calibration ICV and CCV ch ICV and CCV ch Standards traceal	UMENT PERFOR Is performed on all it is acceptable? ecks performed on ecks acceptable?	MANCE AND Canstruments?	ALIBRATIONS (Le	vels D and E)	Yes No N/A Yes No N/A

and the control of th

GENERAL CHEMISTRY ANALYSIS DATA VALIDATION CHECKLIST

3. BLANKS (Levels B, C, D, and E)	
ICB and CCB checks performed for all applicable analyses? (Levels D, E)	Yes No N/A
ICB and CCB results acceptable? (Levels D, E)	
Laboratory blanks analyzed?	Yes No N/A
Laboratory blank results acceptable?	Yes No N/A
Field blanks analyzed? (Levels C, D, E)	Yes No N/A
Field blank results acceptable? (Levels C, D, E)	Yes No NA
Transcription/calculation errors? (Levels D, E)	Yes No (N/A)
Comments:	noff
4. ACCURACY (Levels C, D, and E)	
Spike samples analyzed?	Ye No N/A
Spike recoveries acceptable?	Yes (No N/A
Sike standards NIST traceable? (Levels D, E)	Yes No N/A
Spike standards expired? (Levels D, E)	Yes No NA
LCS/BSS samples analyzed?	Yes No N/A
LCS/BSS results acceptable?	(Yas No N/A
Standards traceable? (Levels D, E)	Yes No (N/)
Standards expired? (Levels D, E)	Yes No (V/A)
Franscription/calculation errors? (Levels D, E)	Yes No 10/20
Performance audit sample(s) analyzed?	Yes No N/A
Performance audit sample results acceptable?	Yes No (N)A
Comments: TPH -11090 -J cell	no 1945

GENERAL CHEMISTRY ANALYSIS DATA VALIDATION CHECKLIST

5. PRECISION (Levels C, D, and E)	
Duplicate RPD values acceptable?	Yes No N/A
Duplicate results acceptable?	Yes (N) N/A
MS/MSD standards NIST traceable? (Levels D, E)	
MS/MSD standards expired? (Levels D, E)	
Field duplicate RPD values acceptable?	
Field split RPD values acceptable?	
Transcription/calculation errors? (Levels D, E) Comments: TPH - 40.9 98 Jall	Yes No NA
FD 4PH 839.	
6. HOLDING TIMES (all levels)	
Samples properly preserved?	Yes No N/A
Sample holding times acceptable?	Yes No N/A
Comments:	

GENERAL CHEMISTRY ANALYSIS DATA VALIDATION CHECKLIST

7. RESULT QUANTITATION AND DETECTION LIMITS (all levels)	2
Results reported for all requested analyses?	
Results supported in the raw data? (Levels D, E)	
Samples properly prepared? (Levels D, E)	
Detection limits meet RDL?	
Detection limits meet RDL? Transcription/calculation errors? (Levels D, E)	
Comments:	
	

Additional Documentation Requested by Client

INORGANICS METHOD BLANK DATA SUMMARY PAGE 01/04/06

CLIENT: TNUHANFORD RC-032 K0146 WORK ORDER: 11343-606-001-9999-00 LVL LOT #: 0512L942

SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	LIMIT	FACTOR
RESERS	7×44446464				*****	**
BLANKLO	05LVI093-MB1	Chromium VI	0.20 u	MG/KG	0.20	1.0
	·					
BLANK10	05LHC080-MB1	Petroleum Hydrogarbona	133 u	MG/KG	133	1.0

INORGANICS ACCURACY REPORT 01/04/06

CLIENT: TNUHANFORD RC-032 K0146 WORK ORDER: 11343-606-001-9999-00 LVL LOT #: 0512L942

	•		SPIKED	INITIAL	SPIKED		DILUTION
SAMPLE	SITE ID	analyte	SAMPLE	result	AMOUNT	*RECOV	FACTOR (SPK)
352277				****	*====	*****	二 生 生 二 味 也 一 年 年 中
-001	J10VC1	Soluble Chromium VI	4.1	0.21u	4.1	94.0	. 1.0
	•	Insoluble Chromium VI	1110	0.21u	1020	108.7	100
-002	J10VC2	Petroleum Hydrocarbons	992	1650	576	-110.	2.0
BLANK10	05LVI093-MB1	Soluble Chromium VI	4.1	0.20u	4.0	101.8	1.0
	•	Insoluble Chromium VI	1180	0.201	1060	111.5	100
BLANK10	05LHC080-MB1	Petroleum Hydrocarbons	563	133 u	560	100.5	1.0

INORGANICS PRECISION REPORT 01/04/06

CLIENT: TNUHANFORD RC-032 K0146 WORK ORDER: 11343-606-001-9999-00 LVL LOT #: 0512L942

SAMPLE	SITE ID	ANALYTE	RESULT	REPLICATE	RPD	DILUTION FACTOR (REP)
	三三本司会办法办公会关系以及工工工程的 成果	=====+++===============		******		=======================================
-001REP	J10VC1	Chromium VI	0.2lu	0.37	NC	1.0
-002REP	J10VC2	* Solids	97.3	95.1	2.3	1.0
		Petroleum Hydrocarbons	1650	1090	40.9	2.0
-003REP	J10VC3	* Solids	100	99.9	0.020	1.0

Date:

1 March2006

To:

Washington Closure Hanford Inc. (technical representative)

From:

TechLaw, Inc.

Project:

100F Remaining Sites Burial Grounds - Soil - Full Protocol - Waste Site

126-F-2

Subject: PCB - Data Package No. K0146-LLI

INTRODUCTION

This memo presents the results of data validation on Data Package No. K0146 prepared by Lionville Laboratory Inc. (LLI). A list of samples validated along with the analyses reported and the method of analysis is provided in the following table.

	l i Samole, David T	ALTO LOS DE LA CONTRACTOR DEL CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR	in ivalidation as	Dare St.
J10VC1	12/14/05	Soil	ပ	See note 1
J10VC2	12/14/05	Soil	С	See note 1

^{1 -} PCBs by 8082.

Data validation was conducted in accordance with the Washington Closure Hanford (WCH) validation statement of work and the 100 Area Remedial Action Sampling and Analysis Plan (DOE/RL-96-22, February 2005). Appendices 1 through 5 provide the following information as indicated below:

Appendix 1. Glossary of Data Reporting Qualifiers

Appendix 2. Summary of Data Qualification

Appendix 3. Qualified Data Summary and Annotated Laboratory Reports

Appendix 4. Laboratory Narrative and Chain-of-Custody Documentation

Appendix 5. Data Validation Supporting Documentation

DATA QUALITY OBJECTIVES

Holding Times

Sample data were assessed to ascertain whether the holding time requirements were met by the laboratory. The holding time requirements are as follows: Soil samples must be extracted within 14 days of the date of sample collection and analyzed within 40 days from the date of extraction.

If holding times are exceeded by less than two times the limit, all associated sample results are qualified as estimates and flagged "J" for detects and "UJ" for nondetects. If holding times are exceeded by greater than two times the limit, all associated detected sample results are qualified as estimates and flagged "J" and all non-detects are rejected and flagged "UR".

All holding times were acceptable.

Method Blank

Method blank analyses are performed to determine the extent of laboratory contamination introduced through sampling, sample preparation or analysis. At least one method blank analysis must be conducted for every 20 samples. Method blanks should not contain target compounds at a concentration greater than required quantitation limit (RQL). If target compounds are present, sample results less than five times the blank concentration are qualified as undetected and flagged "U". If the sample result is less than five times the blank concentration and less than RQL, the result is qualified as undetected and elevated to the RQL.

All method blank results were acceptable.

Field Blanks

No field blanks were submitted for analysis.

· Accuracy

Matrix Spike & Laboratory Control Sample

Matrix spike (MS) and laboratory control sample (LCS) analyses are used to assess the analytical accuracy of the reported data. The matrix spike is used to assess the effect of the matrix on the ability to accurately quantify sample concentrations. Recoveries must fall within the range of 70% to 130%. If spike recoveries are outside control limits, detected sample results less than five times the spike concentration are qualified as estimates and flagged "J". Non-detected sample results with spike recoveries outside control limits are qualified as estimates and flagged "UJ". Sample results greater than five times the spike concentration require no qualification.

All accuracy results were acceptable.

Surrogate Recovery

The analysis of surrogate compounds provides a measure of performance for individual samples. Matrix-specific surrogate compound recovery control windows have been established by the laboratory. When a surrogate compound recovery is outside the control window, all positively identified target compounds associated with the unacceptable surrogate recoveries are qualified as estimates and flagged

。1918年 - 1918年 - 1918

"J". Non-detected compounds with surrogate recoveries less than the lower control limit are qualified as having an estimated detection limit and flagged "UJ". Non-detected compounds with surrogate recoveries above the upper control limit require no qualification.

All surrogate results were acceptable.

Precision

Matrix Spike/Matrix Spike Duplicate Samples

Matrix spike/matrix spike duplicate results provide matrix-specific information on the precision of the method for specific target compound classes. Precision is expressed as the relative percent difference (RPD) between the recoveries of duplicate matrix spike analyses performed on a sample. For soil samples, results must be within RPD limits of plus/minus 30%. If RPD values are out of specification and the sample concentration is less than five times the spike concentration, all associated detected sample results are qualified as estimates and flagged "J". If RPD values are out of specification and the sample concentration is greater than five times the spike concentration, no qualification is required.

All precision results were acceptable.

Field Duplicate Samples

One set of field duplicates (J10VC1/J10VC2) were submitted for analysis. Field duplicates are assessed using the same criteria as for laboratory duplicates. All field duplicate results were acceptable.

Analytical Detection Levels

Reported analytical detection levels are compared against the 100 Area RQLs to ensure that laboratory detection levels meet the required criteria. All analytes met the RQL.

Completeness

Data Package No. K0146 was submitted for validation and verified for completeness. Completeness is based on the percentage of data determined to be valid (i.e., not rejected). The completion percentage was 100%.

MAJOR DEFICIENCIES

None found.

MINOR DEFICIENCIES

None found.

REFERENCES

WCH, Contract #20266, Validation Statement of Work, Washington Closure Hanford Incorporated, July 7, 2003.

DOE/RL-96-22, Rev. 4, 100 Area Remedial Action Sampling and Analysis Plan, U.S. Department of Energy, February 2005.

Glossary of Data Reporting Qualifiers

Qualifiers which may be applied by data validators in compliance with the procedures herein are as follows:

- Indicates the compound or analyte was analyzed for and not detected in the sample. The value reported is the sample quantitation limit corrected for sample dilution and moisture content by the laboratory.
- Indicates the compound or analyte was analyzed for and not detected in the sample. Due to a minor QC deficiency identified during the data validation, the associated quantitation limit is an estimate.
- J Indicates the compound or analyte was analyzed for and detected. Due to a minor QC deficiency identified during the data validation, the associated quantitation limit is an estimate.
- R Indicates the compound or analyte was analyzed for, detected, and due to an identified major QC deficiency, the data are unusable.
- UR Indicates the compound or analyte was analyzed for and not detected in the sample. Additionally, the data is unusable due to an identified major QC deficiency.
- NJ Indicates presumptive evidence of a compound at an estimated value.

 The data may not be valid for some specific applications (i.e., usable for decision-making purposes).
- Indicates presumptive evidence of a compound. The data may not be valid for some specific applications (i.e., usable for decision-making purposes).

Appendix 2
Summary of Data Qualification

PCB DATA QUALIFICATION SUMMARY*

SDG: K0146	REVIEWER: TLI	PROJECT: 126-F-2	PAGE 1 OF 1					
COMMENTS: No qualifiers assigned								

^{* -} The Qualified Data Summary Table includes laboratory applied "U" qualifiers not specifically identified here. The laboratory applied "U" qualifiers are included to minimize misinterpretation of results contained in the table.

Qualified Data Summary and Annotated Laboratory Reports

Project: WASHINGTO	N CLOSURE	HANFOR)]	
Laboratory: LLI	SDG: H	(0146		1	
Sample Number	J10VC1		J10VC2		
Remarks			Duplicate		
Sample Date	12/14/05		12/14/05		
Extraction Date	12/19/05		12/19/05		
Analysis Date	12/22/05		12/22/05		
PCB	RQL	Result	Q	Result	Q
Aroclor-1016	100	14	υ	14	U
Aroclor-1221	100	14	U	14	Ū
Aroclor-1232	100	14	U	14	Ū
Aroclor-1242	_ 100	14	Ų	14	U
Aroclor-1248	100	14	U	14	U
Aroclor-1254	100	35		74	
Aroclor-1260	100	14	υ	14	U

PCBs by GC

Report Date: 12/23/05 10:11 RFW Batch Number: 0512L942 Client: TMU-HANFORD RC-032 Work Order: 11343606001 Page: 1

•	Cust ID:	J10VC	L	J10VC	L	J10VC1	•	J10VC2	}	PBLKYS		PBLKYS BS	
Sample	RFW#:	001	L	001 M	3	001 MSI)	002		05LE1010-M	œ1	05LE1010-	MB1
Information	Matrix:	SOIL		SOIL		SOIL	•	SOIL		SOIL		SOIL	
	D.F.:	1.0	00	1.0	00	1.0	0	1.0	0	1.0	00	1.0	00
	Units:	UG/I	KG	UG/I	KG	UG/R	iG	UG/1	KG	UG/R	CG .	UG/I	KG
Surrogate:	Tetrachloro-m-xylene	85	*	86	*	84	*	81	*	88	*	78	₽ -
	Decachlorobiphenyl	74	*	72	¥	71	ŧ	67	*	78	*	68	¥
	****************		-fl		-=fl≃-	*****	=fl==	= 4 2 2 2 2 2 2 2 2	=fl		-f1	****	≃≖£
Aroclor-1016		14	U	115	*	108	ŧ	14	U	13	U	87	ક
Aroclor-1221		14	U	14	U	14	U .	14	Ū	13	U	13	Ü
Aroclor-1232		14	U	14	U	14	U,	14	Ū	13	U	13	Ū
Aroclor-1242		14	U	14	Ū	14	ט	14	U	13	Ü	13	Ū
Aroclor-1248		14	. ט	14	U	14	Ū	14	U	13	ט	13	Ū
Aroclor-1254		35		ľ		I		74		13	U	13	ם
Aroclor-1260		i 14	Ū	. 114	Ł	110	8	14	Ū	13	Ū	91	*

U= Analyzed, not detected. J= Present below detection limit. B= Present in blank. NR= Not reported. NS= Not spiked. %= Percent recovery. D= Diluted out. I= Interference. NA= Not Applicable. *= Outside of EPA CLP QC

Laboratory Narrative and Chain-of-Custody Documentation

Case Narrative

Client: TNU-HANFORD RC-032

LVL#: 0512L942

SDG/SAF# KO146 /RC-032

W.O. #: 11343-606-001-9999-00

Date Received: 12-16-2005

PCB

Two (2) soil samples were collected on 12-14-2005.

The samples and their associated QC samples were extracted on 12-19-2005 and analyzed according to Lionville Laboratory SOPs based on SW846, 3rd Edition procedures on 12-21,22-2005. The extraction procedure was based on method 3540C and the extracts were analyzed based on method 8082.

The following is a summary of the QC results accompanying the sample results and a description of any problems encountered during their analyses:

- 1. All results presented in this report are derived from samples that met LvLI's sample acceptance policy.
- 2. Samples were extracted and analyzed within required holding time.
- 3. The samples and their associated QC samples received Copper-Sulfur and Sulfuric Acid cleanups according to Lionville Laboratory SOPs based on SW846 methods 3660A and 3665A respectively.
- 4. The method blank was below the reporting limits for all target compounds.
- 5. All surrogate recoveries were within acceptance criteria.
- 6. The blank spike recoveries were within acceptance criteria.
- 7. All matrix spike recoveries were within acceptance criteria.
- 8. The initial calibrations associated with this data set were within acceptance criteria.
- 9. The continuing calibration standards analyzed prior to sample extracts were within acceptance criteria.
- 10. LvLI is NELAP accredited by the state of Pennsylvania and holds over 20 additional state accreditations. For a complete listing of accrediting authorities and the corresponding analytes/methods, please contact your Project Manager.
- 11. I certify that this sample data package is in compliance with SOW requirements, both technically and for completeness, other than the conditions detailed above. Release of the data contained in this hard-copy data package has been authorized by the laboratory Manager or a designee, as verified by the following signature.

Iain Daniels

Laboratory Manager

Lionville Laboratory Incorporated

12/28/07 Date

som\r\\group\data\pest\tnu hanford\0512-942.pcbs
The results presented in this report relate only to the analytical testing and conditions of the samples at receipt and during storage. All pages of this report are integral parts of the analytical data. Therefore, this report should only be reproduced in its entirety of 7 pages.

Washington Closure Hanford	CI	IAIN OF CUST	CODY/S	AMP	LE ANA	LYS	IS I	REQUEST	•	R	C-032-001	Page i	ol T	
Collector R.T. Coffman						Project Coordi KESSNER, JH	ator	Price Code	8K		o bauoranıı			
Project Designation 100-F Remaining Sites Burial Grounds - Soil Full Protocol		ng Location F-2 Clearwells Stockpile	c Area -				SAF No. Air Quality				ty 🗆	15	988988	
Ice Chest No. ERC - 01 - 027		ogbook No. -1174		COA R126F	72000		1	Method of Shipment FedEx						
Shipped To EBERLINE SERVICES (LIONVILLE)	Offsite	Proserty No.	0601	136		•		Bill of Ladine/	Air Bill	Na S	ee OSP	<u>د</u>		
POSSIBLE SAMPLE HAZARDS/REMARKS NA			Nonc	Cool 4	C Cool 40	C	cool 4C	None	Nonc	None	None	Cool 4C		
		Type of Container	- aG	#G	ıC.	+	aG.	- 20	#G	#G	aG	,aG		
Special Handling and/or Storage Cool 4 deg C		No. of Container(s)	1	1	1	1	1.	\	1			1.		
Q		Volume 25	500 ml (25 (1-6.4	60mi	L 60mil.	-1	20ml	, 500ml.	60ml	60ml	60miL	125mL		
SAMPLE ANALYSIS	- - -		See item (1) in Special Instructions.	Hex - 7			ni-VOA QA (TC		Carbon Trition -	Itotopic Pletonie		TPH (Total) - 415.4		
4	÷									Transition of the second				
	nple Date	Sample Time	in the second			G Ext.			X 10					
	14/05	0935	X	一下	X	_ _	<u>X</u>				<u> </u>	<u> </u>		
	14/05		<u> </u>	\perp_{X}	X		X					X	·	
J10VC3 SOIL 12	140	0935	\perp_{X}				<u>X</u>					<u> </u>		
			<u> </u>											
			<u> </u>	<u> </u>										
	Sign/Print ived By/Stor		ate/Time (4		PECIAL INS	TRUC	TION	VS	. =				Matrix *	
Retinquished By/Removed Folm Date/Time (630 Rece RT Caffman) & Tolkno Black Re			12514)	(I) ICP Metala	6010 (0	Tient 1	list) (Aluminum, A	Antimony,	Amenic, Baria	m, Beryllium, Bon	ia,	S-Sell SE-Sediment	
Retinquished By/Removed From Dute/Time Rege	ived By/Stor	ed In Di	ate/I ame	775 N	Vickel, Potessiu	n, Scleni	ium, Si	ilioon, Sülver, Sodi	um, Vane	dium. Zincl: M	langanese, Molybercury - 7470 - (C	(V)	SO-Solid Si-Sledge	
	Steff		12-15-0	ن) ا سے د	2) Gamma Spe	HOSCOP	y (TCI	L List) (Cesium-13 - Add-on (Silver-1	7. Cobalt	-60. Europium-	152, Europhun-15	i.	W = Water D=Oil	
RZ Steffer K.Z. Stell War 12.15-05		X	ate/Time				-	- tran-or logsers		wore!	·		Ar-Air Dis-Drum Solids Dis-Drum Liquids	
Relinquished By/Removad From Dute/Time Rece	ive Bysio	mis b 12-12.	ete/Time		Personnel no								T=Tion;q Wi=Wipo	
Retinquished By/Removed From Date/Time Rece	tved By Stor		ale/Time		Relinquish sa Ref# <u>2C</u> on	mples (/2 / /:	70m 3	3728 1 <u>5</u>					3.rd, iquid V=Vegetation X=Other	
Relinquished By/Removed From Date/Time Rece	ived By/Stor	ed in D	ate/Fime					•				•		
LABORATORY Received By SECTION			Ti	itle				·		· ·	Ī	Pate/Time	1	
FINAL SAMPLE Disposal Method DISPOSITION			<u>.</u>		p	sposed 1	Ву	· ·				Oute/Time		

Data Validation Supporting Documentation

PCB DATA VALIDATION CHECKLIST

VALIDATION LEVEL:	А	В		D			E	
PROJECT:	28-E-S		DATA PACKAG	E:	<014	6		
VALIDATOR:	TLI	LAB: LLI		DATE:	2/2:	106		
			SDG:	K0146				
		ANALYSES I	PERFORMED					
SW-846 8081	SW-846 8081 (TCLP)	SW-846 8082	SW-846 8081 (TCLP)			· <u>-</u>		
SAMPLES/MAT	RIX				<u></u>			
JIOUC	1 Jloy	C 7 .						
			<u></u>					
					·	<u> </u>		\dashv
<u> </u>		·				oil		\dashv
								
Technical verificati	on documentation p	ETENESS AND Coresent?	***************************************			Yes	(N)	N/A
	,	<u></u>		*,				
2. INSTRUM	MENT PERFORM	ANCE AND CAL	IBRATIONS (Lev	els D and E	3)			\bigcap
Initial calibrations a	acceptable?	••••••	•••••			Yes	No	N/A
Continuing calibrat	ions acceptable?	***************************************	•••••		.,	Yes	No	N/A
							- 1	
Standards traceable	?			***************		Yes	No	N/A
							- 1	- 1
Standards expired?	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•••••		• • • • • • • • • • • • • • • • • • • •	Yes	No	- 1
Standards expired? Calculation check a	cceptable?		•••••			Yes Yes	No No	N/A

PCB DATA VALIDATION CHECKLIST

Yes N	
Yes N Yes N Yes N Yes N Yes N Yes N	
Yes N Yes N Yes N Yes N	0 N/A 0 N/A 0 N/A
Yes N Yes N Yes N Yes N	0 N/A 0 N/A 0 N/A
Yes No.	0 N/A 0 N/A
Yes N	0 N/A
Yes N	o V/A
_	
	o N/A
Yes No	o N/A
Yes No	o (N/A
Yeş No	o N/A
Yes No	o N/A
(Yes) No	o N/A
Yes No	o (N/A
Yes No	
Yes No	o N/A
	N/A
Yes No	s (N/A
Yes No	
Yes(No	
	1
ho PAS	
	Yes No

,我们的一个人的一个人,我们还是不**会的话的说。我的**你的<mark>是这些</mark>我的人的说法的。我们可能是一个人的意思。

PCB DATA VALIDATION CHECKLIST

5. PRECISION (Levels C, D, and E)		
Duplicate RPD values acceptable?	Yes No	N/A
Duplicate results acceptable?	Ye No	N/A
MS/MSD standards NIST traceable? (Levels D, E)	Yes No/	N/A
MS/MSD standards expired? (Levels D, E)	Yes No	N/A
Field duplicate RPD values acceptable?	Yes No	N/A
Field split RPD values acceptable?	Yes No	N
Transcription/calculation errors? (Levels D, E)	Yes No	NY
Comments:		\mathcal{L}
		~
6. SYSTEM PERFORMANCE (Levels D and E)	1	
Chromatographic performance acceptable?	1	
Positive results resolved acceptably?	Yes No	N/A
Comments:	w	
7. HOLDING TIMES (all levels)		
Samples properly preserved?	Yes No	N/A
Sample holding times acceptable?	Yes No	N/A
Comments:		
· · · · · · · · · · · · · · · · · · ·		
	-	

PCB DATA VALIDATION CHECKLIST

8. COMPOUND IDENTIFICATION, QUANTITATION, AND DETECTION LIN	IITS (all		
levels)			,
Compound identification acceptable? (Levels D, E)	Yes	No	N/A
Compound quantitation acceptable? (Levels D, E)	Yes	No/	N/A
Results reported for all requested analyses?	Yes	No	N/A
Results supported in the raw data? (Levels D, E)	Yes	No /	NIA
Samples properly prepared? (Levels D, E)	Yes	No	(N/A
Detection limits meet RDL?		No	N/A
Transcription/calculation errors? (Levels D, E)	Yes	No	N/A)
Comments:			
	<u></u>		
			^
9. SAMPLE CLEANUP (Levels D and E)			
Fluoricil ® (or other absorbent) cleanup performed?	Yes	Np	NA
Lot check performed?	Yes	No	N/A
Check recoveries acceptable?	Yes	No	N/A
GPC cleanup performed?	Yes	Nþ	N/A
GPC check performed?	Yes	No	N/A
GPC check recoveries acceptable?	Yes	No	N/A
GPC calibration performed?	Yes	Nø	N/A
GPC calibration check performed?	Yes	No	N/A
GPC calibration check retention times acceptable?	Yes	Nd	N/A
Check/calibration materials traceable?	Yes	No	N/A
Check/calibration materials Expired?	Yes	No	N/A
Analytical batch QC given similar cleanup?	Yes	No	N/A
Transcription/Calculation Errors?	Yes	Nq	N/A/
Comments:			\mathcal{I}
			

Date:

1 March 2006

To:

Washington Closure Hanford Inc. (technical representative)

From:

TechLaw, Inc.

Project:

100F Remaining Sites Burial Grounds - Soil - Full Protocol - Waste Site

126-F-2

Subject: Radiochemistry - Data Package No. K0146-EB

INTRODUCTION

This memo presents the results of data validation on Data Package No. K0146 prepared by Eberline Services (EB). A list of samples validated along with the analyses reported and the method of analysis is provided in the following table.

AND The state of	nasemble ibeig		AZ Validation (rzy judyjąDją jeju 12 m.
J10VC1	12/14/05	Soil	С	See note 1
J10VC2	12/14/05	Soil	С	See note 1

^{1 -} Gross alpha/beta, tritium, carbon-14, alpha spectroscopy and gamma spectroscopy.

Data validation was conducted in accordance with the Washington Closure Hanford Incorporated (WCH) validation statement of work and the 100 Area Remedial Action Sampling and Analysis Plan (DOE/RL-96-22, February 2005). Appendices 1 through 6 provide the following information as indicated below:

- Appendix 1. Glossary of Data Reporting Qualifiers
- Appendix 2. Summary of Data Qualification
- Appendix 3. Qualified Data Summary and Annotated Laboratory Reports
- Appendix 4. Laboratory Narrative and Chain-of-Custody Documentation
- Appendix 5. Data Validation Supporting Documentation
- Appendix 6. Additional Data Requested by Client

DATA QUALITY PARAMETERS

· Holding Times

Holding times are calculated from Chain-of-Custody forms to determine the validity of the results. The maximum holding time for radiochemical analysis is 6 months.

All holding times were acceptable.

Preparation (Method) Blanks

Laboratory Blanks

Blank samples are analyzed to determine if positive results are due to laboratory reagent, sample container, or detector contamination. If blank analysis results indicate the presence of an analyte above the minimum detectable activity (MDA), the following qualifiers are applied: All positive sample results less than five times the highest blank concentration are qualified as estimates and flagged "J"; sample results below the MDA are qualified as undetected and flagged "U"; sample results above the MDA and greater than five times the highest blank concentration are not qualified.

All blank results were acceptable.

Field (Equipment) Blank

No equipment blanks were submitted for analysis.

· Accuracy

Accuracy is evaluated from laboratory control sample (LCS) or blank spike sample (BSS) batch samples and spiked samples from the analytical batch. Measured activities are compared to the known added amounts. The acceptable LCS or BSS and matrix spike (MS) recovery range is 70-130%. In addition, samples may be spiked with a radiochemical tracer to assist in isolating the radioisotope of interest with the yield of the tracer being used in calculating sample activity. The acceptable range for tracer recovery is 20% to 105%. Spike sample results outside the above ranges result in associated sample results being qualified as estimates, or not qualified, depending on the activity of the individual sample. Results are rejected for LCS/BSS recoveries of less than 30% and tracer recoveries of less than 20%, and tracer recoveries of greater than 115% for detected results.

Due to the lack of a matrix spike analysis, all carbon-14 and tritium results were qualified as estimates and flagged "J".

All other accuracy results were acceptable.

Laboratory Duplicates

Analytical precision is expressed by the relative percent differences (RPD) between the recoveries of duplicate matrix spike analyses performed on a sample in the analytical batch. Precision may alternatively be assessed using unspiked duplicate

analyses performed on a sample in the analytical batch. If both sample and replicate activities (concentrations) are greater than five times the contract required detection limit (CRDL) and the RPD is less than 30%, no qualification is required. If either activity (concentration) is less than five times the CRDL, the RPD control limit is less than or equal to two times the CRDL. If the RPD is outside the applicable control limit, associated results are qualified as estimated detects or estimated non-detects.

All duplicate results were acceptable.

Field Duplicates

One set of field duplicate samples (J10VC1/J10VC2) were submitted for analysis. Field duplicates are compared using the same criteria as for laboratory duplicates. The RPDs for radium-266 (67%), thorium-232 (51%) and potassium-40 (75%) were outside QC limits. Under the WCH statement of work, no qualification is required. All other field duplicate results were acceptable.

· Detection Levels

Reported analytical detection levels for undetected analytes are compared against the remaining waste sites RQLs to ensure that laboratory detection levels meet the required criteria. Five analytes exceeded the RQL. Under the WCH statement of work, no qualification is required.

Completeness

Data package No. KO146 was submitted for validation and verified for completeness. Completeness is based on the percentage of data determined to be valid (i.e., not rejected). The completion percentage was 100%.

MAJOR DEFICIENCIES

None found.

MINOR DEFICIENCIES

Due to the lack of a matrix spike analysis, all carbon-14 and tritium results were qualified as estimates and flagged "J". Data flagged "J" indicates that the associated concentration is an estimate, but under the BHI statement of work, the data may be usable for decision-making purposes. All other validated results are

"我们在这个人,我们们们的一个人,我们还能在一颗大块是这样表现了我就能说,这是不是一个人的人的。"

considered accurate within the standard error associated with the methods

Five analytes exceeded the RQL. Under the WCH statement of work, no qualification is required.

REFERENCES

WCH, Contract #20266, Validation Statement of Work, Washington Closure Hanford Incorporated, July 7, 2003.

DOE/RL-96-22, Rev. 4, 100 Area Remedial Action Sampling and Analysis Plan, U.S. Department of Energy, February 2005.

Appendix 1

Glossary of Data Reporting Qualifiers

Qualifiers which may be applied by data validators in compliance with the BHI statement of work are as follows:

- Indicates the compound or analyte was analyzed for and not detected above the minimum detectable activity (MDA) in the sample. The value reported is the sample result corrected for sample dilution and moisture content by the laboratory. The data is usable for decision making purposes.
- Indicates the compound or analyte was analyzed for and not detected at concentrations above the minimum detectable activity (MDA) in the sample. Due to a minor QC deficiency identified during the data validation, the associated quantitation limit is an estimate, but is usable for decision making purposes.
- J Indicates the compound or analyte was analyzed for and detected. Due to a minor QC deficiency identified during the data validation, the associated concentration is an estimate, but the data are usable for decision-making purposes.
- R Indicates the compound or analyte was analyzed for, detected, and due to an identified major QC deficiency, the data are unusable.
- UR Indicates the compound or analyte was analyzed for and not detected in the sample. Additionally, the data is unusable due to an identified major QC deficiency.

Appendix 2
Summary of Data Qualification

RADIOCHEMISTRY DATA QUALIFICATION SUMMARY*

CONTRACTOR OF THE PROPERTY OF THE PARTY OF T		FPAG REMORU EVAL
QUALIFIER	SAMPLES AFFECTED	REASON
J	All	No MS

^{* -} The Qualified Data Summary Table includes laboratory applied "U" qualifiers not specifically identified here. The laboratory applied "U" qualifiers are included to minimize misinterpretation of results contained in the table.

Appendix 3

Qualified Data Summary and Annotated Laboratory Reports

Project: WASHINGTO	Project: WASHINGTO CLOSURE HANFORD					
Laboratory: EB						
Case	SDG: I	K0146				
Sample Number		J10VC1		J10VC2		
Remarks				Duplicate		
Sample Date		12/14/05		12/14/05		
Radiochemistry	RQL	Result	α		Q	
Gross alpha		10.4		8.46		
Gross beta		20.0		16.2		
Tritium	10	0.207			_	
Carbon-14	1	-1.99		0.607	ÛĴ	
Uranium-233/234	1	0.291		0.532		
Uranium-235	1		U	0.077	ט	
Uranium-238	1	0.524		0.761		
Plutonium-238	1	0		0	U	
Plutonium-239/240		0.024	U	0.038	כ	
Potassium-40		13.8		6.31		
Cobalt 60	0.05		ح	U	J	
Cesium 137	0.05			U	ט	
Radium-226		0.516	_	0.256		
Radium-228		0.709		0.420		
Europium 152	0.1	U		υ		
Europium 154	0.1		Ů*	U	U*	
Europium 155	0.1		U*	U	U *	
Thorium-228		0.651	L	0.613		
Thorium-232		0.709	Щ	0.420		
Uranium-235(gea)		U	1	U	U	
Uranium-238(gea)		U		U	U	
Americium-241(gea)		U		U	C	
Silver-108	<u> </u>	U	U	U	U	

EBERLINE SERVICES/RICHMOND SAMPLE DELIVERY GROUP K0146

7790-001

DATA SHEET

J10VC1

	7790 Melissa C. Mannion	Client/Case no Contract		SDG_K0146
Lab sample id Dept sample id Received % solids	7790-001 12/16/05		126-F-2 Clearwells St 12/14/05 09:35 110:	3 <u>q</u>

ANALYTE	CAS NO	RESULT pCi/g	2σ ERR (COUNT)	MDA pCi/g	RDL pCi/g	QUALI- FIERS	TEST
Gross Alpha	12587-46-1	10.4	3.9	3.1	10		93A
Gross Beta	12587-47-2	20.0	4.4	5.4	15		93B
Tritium	10028-17-8	0.207	1.4	2.5	400	v 🏋	H
Carbon 14	14762-75-5	<u>-1.99</u>	1.9	3.2	50	ប្រ្	C
Uranium 233/234	U-233/234	0.291	0.18	0.22	1.0		ט
Uranium 235	15117-96-1	0	0.071	0.27	1.0	Ü	U
Uranium 238	U-238	0.524	0.24	0.22	1.0		U
Plutonium 238	13981-16-3	0	0.049	0.19	1.0	U	PU
Plutonium 239/240	PU-239/240	0:024	0.049	0.19	1.0	ប	PU
Potassium 40	13966-00-2	13.8	0.84	0.36			GAM
Cobalt 60	10198-40-0	U		0.038	0.050	U	GAM
Cesium 137	10045-97-3	0.071	0.040	0.046	0.10		GAM
Radium 226	13982-63-3	0.516	0.075	0.074	0.10		GAM
Radium 228	15262-20-1	0.709	0.16	0.16	0.20		GAM
Europium 152	14683-23-9	.U		0.091	0.10	ט	GAM
Europium 154	15585-10-1	U		0.11	0.10	U	GAM
Europium 155	14391-16-3	บ		0.12	0.10	Ū	GAM
Thorium 228	14274-82-9	0.651	0.050	0.048		-	GAM
Thorium 232	TH-232	0.709	0.16	0.16			GAM
Uranium 235	15117-96-1	ט	•	0.16		σ	GAM
Uranium 238	U-238	U		4.7		· ʊ	GAM
Americium 241	14596-10-2	Ū		0.33		ט	GAM
Silver 108m	14391-65-2	ប		0.027		ט	GAM

100-F Remaining Sites Burial Grounds

2)25/81

DATA SHEETS
Page 1
SUMMARY DATA SECTION
Page 11

Lab id EBRLNE
Protocol Hanford
Version Ver 1.0
Form DVD-DS
Version 3.06
Report date 01/11/06

EBERLINE SERVICES/RICHMOND SAMPLE DELIVERY GROUP K0146

7790-002

DATA SHEET

J10VC2

	7790 Melissa C. Mannion	Client/Case no Contract	
Lab sample id Dept sample id Received % solids	7790-002 12/16/05		126-F-2 Clearwells Stock SOLID 12/14/05 09:35 1085 q

ANALYTE	CAS NO	RESULT pCi/g	2σ ERR (COUNT)	MDA pCi/g	RDL pCi/g	QUALI~ FIERS	TEST
Gross Alpha	12587-46-1	8.46	3.6	3.3	10		93A
Gross Beta	12587-47-2	16.2	4.6	6.4	15	_	93B
Tritium	10028-17-8	1.06	1.5	2.4	400	υJ	H
Carbon 14	14762-75-5	-0.607	1.8	3.0	50	ซุฐ์	C
Uranium 233/234	U-233/234	0.532	0.18	0.12	1.0		υ .
Uranium 235	15117-96-1	0.077	0.062	0.12	1.0	U	ט
Uranium 238	U-238	0.761	0.21	0.097	1.0		U
Plutonium 238	13981-16-3	0	0.038	0.15	1.0	ט	PU
Plutonium 239/240	PU-239/240	0.038	0.038	0.15	1.0	U	ΡÜ
Potassium 40	13966-00-2	6.31	0.46	0.30			GAM
Cobalt 60	10198-40-0	ָּט		0.036	0.050	U	GAM
Cesium 137	10045-97-3	U	•	0.039	0.10	υ	GAM
Radium 226	13982-63-3	0.256	0.072	0.074	0.10		GAM
Radium 228	15262-20-1	0.420	0.13	0,13	0.20		GAM
Europium 152	14683-23-9	Ü ·		0.14	0.10	υ.	GAM
Europium 154	15585-10-1	U		0.13	0.10	υ	GAM
Europium 155	14391-16-3	· U		0.15	0.10	U	GAM
Thorium 228	14274-82-9	0.613	0.078	0.073			GAM
Thorium 232	TH-232	0.420	0.13	0.13			GAM
Uranium 235	15117-96-1	U	•	0.20		υ	GAM
Uranium 238	U-238	· U		4.2		υ	GAM
Americium 241	14596-10-2	U		0.21		ט	GAM
Silver 108m	14391-65-2	ט		0.029		ប	GAM

100-F Remaining Sites Burial Grounds

Misla

DATA SHEETS
Page 2
SUMMARY DATA SECTION
Page 12

Lab id EBRLNE
Protocol Hanford
Version Ver 1.0
Form DVD-DS
Version 3.06
Report date 01/11/06

Appendix 4

Laboratory Narrative and Chain-of-Custody Documentation

Case Narrative

Page 1 of 1

1.0 GENERAL

Washington Closure Hanford (WCH) Sample Delivery Group K0146 was composed of two solid (soil) samples designated under SAF No. RC-032 with a Project Designation of: 100-F Remaining Sites Burial Grounds – Soil Full Protocol.

The samples were received as stated on the Chain-of-Custody document. Any discrepancies are noted on the Eberline Services Sample Receipt Checklist. The results were transmitted to WCH via e-mail on January 11, 2006.

2.0 ANALYSIS NOTES

2.1 Gross Alpha and Gross Beta Analysis

No problems were encountered during the course of the analyses.

2.2 Tritium Analysis

No problems were encountered during the course of the analyses.

2.3 Carbon-14 Analysis

No problems were encountered during the course of the analyses.

2.4 Isotopic Uranium Analysis

No problems were encountered during the course of the analyses.

2.5 Isotopic Plutonium Analysis

No problems were encountered during the course of the analyses.

2.6 Gamma Spectroscopy

No problems were encountered during the course of the analyses.

Case Narrative Certification Statement

"I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data obtained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature."

Melissa C. Mannion
Senior Program Manager

Washington Closur	e Hanford	CI	IAIN OF CUST	ODY/S.	AMPLE	ANALY	YSIS	REQ	JEST		RC-	32-001	Page 1	of <u>1</u>
Collector R.T. Coffman	· <u> </u>		nv Contact Coffman	Telephor 528-64				Project KESSNI	Coordina ER, JH	Pr	ice Code	8K		rnaround
Project Designation 100-F Remaining Sites Burial	Grounds - Soil Full Proto	Sampli col 126-	ing Location F-2 Clearwells Stockpile	area KO	146 (790)		SAF No RC-032		Ai	r Quality		15	r40
Ice Chest No. ERC -	01-037	Field I	Logbook No. -1174		COA R126F220	00		Method FedE	of Shipm	ent .				
Shipped To EBERLINE SERVICES LK	•	Offsite	Property No.	1060	150			Bill of	Lading/A	ir Bill No.	See	OSP	<u> </u>	
POSSIBLE SAMPLE HAZA				\	· · · · · · · · · · · · · · · · · · ·]	'	T					
NA < POT	limits		Preservation	None	Cool 4C	Cool 4C	Cool 4	IC I	None	None	None	None	Cool 4C	\
Special Handling and/or S	itorgge		Type of Container	30	aG	aG	aG		aG	aG	aG	aG ·	aG	
Good to the RZS 12-15.	-05-6	·	No. of Container(s)	1		1	1		1	1	1	1	1	$\prod_{i=1}^{n}$
None			Volume	250mL	60mL	60mL	1200	nL 5	00mL	60mL	60mL	60mL	125mL	
7000 1 5	SAMPLE ANALY	SIS		See item (1) in Special Instructions	Chromium Hex - 7106	PCBs - 8082	Semi-V0 8270A (TCL) S	tern (2) in pecial ructions	Carbon-14; Tritium - H3	Isotopic Photonium+ ISOTOP'S URAINIUM	Gross Alpha; Gross Beta	TPH (Total) - 418.1	Bre VI
Sample No.	Matrix *	Sample Date	Sample Time			16							. F 4 2.3	
J10VC1	SOIL	12/14/05	0935	n. Ladisty, in		1	K.	20,722,000	X	Χ	X	Χ	10 m/1 0 m/2 m m m m m m m m m m m m m m m m m m	9
J10VC2	SOIL	12/14/05							X	Χ	X	*		
J10VC3	SOIL	12/14/05												<u> </u>
						<u> </u>	<u> </u>	$\overline{}$					ļ	\ \
ON A PLANT OF PAGGEOGIC	<u> </u>	Cl-i-/D-i-	Neme	<u> </u>	lope	CLAI INCOM							<u></u>	Matrix *
Relinquished By/Removed From Relinquished By/Removed From Relinquished By/Removed From Relinquished By/Removed From LABORATORY Received B	Date/Time 16 3 0 Date/Time 12 Alex Date/Time 1025	Received By/Stor Received By/Stor Received By/Stor Received By/Stor	red in D D D D D D D D D D D D D D D D D D	ate/Time	(1) 1 Cadr Nick (2) (2) (2) (2) (3) (4) (4) (4) (4) (4)	nium, Calcium, el, Potassium, S	10 (Clien Chromiu Selenium, scopy (Tomma Spec	nt List) {Ali m, Cobalt, Silicon, Si CL List) {C c - Add-on	Copper, In Iver, Sodiu Cesium-137	on, Lead, Ma m, Vanadiun , Cobalt-60,	enic, Barium, B gmesium, Mang n, Zinc); Mercu Europium-152,	anese, Molyb ry - 7470 - (C Europium-154	denum, CV)	S-Soil SE-Sediment SO-Solid SI-Stadge W = Water O-Oil A-Air DS-Drum Solids DL-Drum Liquids T=Tissue WI-Wipe L-Liquid V=Vegetation X=Other
SECTION						Dies	sed By					<u></u>	Date/Time	
FINAL SAMPLE Disposal M DISPOSITION	Éthod		·		·		acu ay					·		

Appendix 5

Data Validation Supporting Documentation

APPENDIX A RADIOCHEMICAL DATA VALIDATION CHECKLIST

r	· · · · · · · · · · · · · · · · · · ·				
VALIDATION LEVEL:	A	В	(c)	D	Е
PROJECT:	128-F-2		DATA PACKAG	E: 100	147
VALIDATOR:	TLI	LAB: 🤁	B		123/00
	· · · · · · · · · · · · · · · · · · ·		SDG:	K0146	
(Gross Alpha/Beta	Strontium-90	ANALYSES Technetium-99	PERFORMED Alpha Spectroscopy	Gamma Spectroscopy	
Total Uranium	Radium-22	Tritium	(274)	Овання ореалозсору	
SAMPLES/MAT	RIX			<u> </u>	
JION	-1 Tlouc	?			
		·			
				Soil	
1 Completenes	C		**********************		□ N/A
1. Completenes		***************************************	***********		U N/A
Technical verific	cation forms pre	sent?	••••••	Yes	No N/A
Comments:	•				<u></u>
Comments					
	·				
					-
					. ^
2. Initial Calibra	ation (Levels D,	E)	***************************************	***********	N/A
·	111	•			
Instruments/dete	ectors calibrated	<i>?</i>		*******************	Yes No N/A
Initial calibration	n acceptable?		•••••••••••••	***************************************	Yes No N/A
Standards NIST	traceable?	*******	•		Yes No N/A
Standards Expir	ed?	**************	*************	*******************	Yes No N/A
			••••••••••••		
	_		 :		
<u> </u>					

3. Continuing Calibration (Levels D, E)	N/A
Calibration checked within required frequency?	Yes No N/A
Calibration check acceptable?	Yes No N/A
Calibration check standards traceable?	Yes No N/A
Calibration check standards expired?	Yes No N/A
Calculation check acceptable?	Yes No N/A
Comments:	
4. Background Counts (Levels D, E)	
Background Counts checked within required frequency?	1
Background Counts acceptable?	Yes No N/A
Calculation check acceptable?	Yes No N/A
Comments:	
	
	_

on the second of the control of the second s

5. Blanks (Levels B, C, D, E)		🗆	N/A
Method blank analyzed within required frequency?	Yes	No	N/A
Method blank results acceptable?			
Analytes detected in method blank?		/	
Field blank(s) analyzed?	\ \	\sim	
Field blank results acceptable?	`		-
Analytes detected in field blank(s)?			>-<
Transcription/Calculation Errors? (Levels D, E)	Yes	No	NA
Comments:	NOF	_	
		_	
6. Laboratory Control Samples or Blank Spike Samples (Levels C, D, E)		🗆	N/A
LCS /BSS analyzed within required frequency?	Yes	No	N/A
LCS/BSS recoveries acceptable?	Yes	No	N/A
LCS/BSS traceable? (Levels D,E)			1
LCS/BSS expired? (Levels D,E)	Yes	No	ŊA
LCS/BSS levels correct? (Levels D,E)	Yes	No (N/A
Transcription/Calculation Errors? (Levels D, E)			7
Comments:			-
7. Chemical Carrier Recovery (Levels C, D, E)	***************	4	N/A
Chemical carrier added?	Yes	No	N/A
Chemical recovery acceptable?	Yes	No	N/A
Chemical carrier traceable? (Levels D, E)			

and provide a compared to the control of the contro

Chemical carrier expired? (Levels D, E)Ye	es N	lo N/A	1		
Transcription/Calculation errors? (Levels D, E)					
Comments:			_		
		-	_		
	,		_		
8. Tracer Recovery (Levels C, D, E)		□ N/.	A		
Tracer added?	ba N	io NI/	.T.		
Tracer recovery acceptable?	es r	to NI/	7		
Tracer traceable? (Levels D, E)	es r	10 W	ر ال		
Tracer expired? (Levels D, E)Yo					
Transcription/Calculation errors? (Levels D, E)Yo	es N	40 (N/	3		
Comments:			_		
			_		
			_		
			_		
			_		
9. Matrix Spikes (Levels C, D, E)		. 🗆 N/	A		
Matrix spike analyzed?Y	es l	N Gr	A		
Spike recoveries acceptable?					
Spike source traceable? (Levels D, E)					
Spike source expired? Levels D, E)	es ì	10 W	À		
Transcription/Calculation Errors? (Levels D, E)	'es T	No N	Ā		
Comments: Nums - J 3H & C-14	C 5 1	10 (1)	2.2		
Comments:					
			—		

10. Duplicates (Levels C, D, E)	□ N/A
Duplicates Analyzed at required frequency?	Ves No N/A
RPD Values Acceptable?	
Transcription/Calculation Errors? (Levels D, E)	\sim
Comments:	
11. Field QC Samples (Levels C, D E)	🗆 N/A
Field duplicate sample(s) analyzed?	Yes No N/A
Field duplicate RPD values acceptable?	_
Field split sample(s) analyzed?	
Field split RPD values acceptable?	Yes No WA
Performance audit sample(s) analyzed?	
Performance audit sample results acceptable?	
	n. Pasarfs
FD 14-40 7520	
Ro-224 67%	
th 232 - 51%	
12. Holding Times (All levels)	
·	
Are sample holding times acceptable?	Yes No N/A
Comments:	

13. Results and Detection Limits (All Levels)	□ N/A
Results reported for all required sample analyses?	
Results supported in raw data?(Levels D, E)	Yes No N/A
Results Acceptable? (Levels D, E)	
Transcription/Calculation errors? (Levels D, E)	Yes No WA
MDA's meet required detection limits?	Yes No N/A
Transcription/calculation errors? (Levels D, E)	
Comments: 5 over	

Appendix 6

Additional Documentation Requested by Client

EBERLINE SERVICES/RICHMOND SAMPLE DELIVERY GROUP K0146

7790-004

METHOD BLANK

Method Blank

	7790 Melissa C. Mannion	Client/Case no Contract	SDG_K0146
Lab sample id Dept sample id		Client sample id Material/Matrix SAF No	SOLID

ANALYTE	CAS NO	RESULT pCi/g	2σ ERR (COUNT)	MDA pCi/g	RDL pCi/g	QUALI- FIERS	TEST
Gross Alpha	12587-46-1	1.51	1.9	3.0	10	U	93A
Gross Beta	12587-47-2	-2.40	3.1	5.6	15	υ	93B
Tritium	10028-17-8	0.495	1.6	2.7	400	U	H
Carbon 14	14762-75-5	-1.42	2.0	3,4	50	Ū	C
Uranium 233/234	U-233/234	0.083	0.11	0.21	1.0	ប	U
Uranium 235	15117-96-1	0	0.067	0.26	1.0	υ	U
Uranium 238	บ-238	0.028	0.056	0.21	1.0	Ū	Ü
Plutonium 238	13981-16-3	0.017	0.069	0.13	1.0	ប	ΡÜ
Plutonium 239/240	PU-239/240	0	0.034	0.13	1.0	Ū	PU
Potassium 40	13966-00-2	ט י		0.58		ប	GAM
Cobalt 60	10198-40-0	U		0.022	0.050	υ	GAM
Cesium 137	10045-97-3	U		0.021	0.10	Ŭ	GAM
Radium 226	13982-63-3	Ū		0.046	0.10	U -	GAM
Radium 228	15262-20-1	U		0.10	0.20	Ū	GAM
Europium 152	14683-23-9	U	•	0.052	0.10	Ü	GAM
Europium 154	15585-10-1	U		0.059	0.10	U	GAM
Europium 155	14391-16-3	Ŭ		0.070	0.10	U	GAM
Thorium 228	14274-82-9	U		0.033		U	GAM
Thorium 232	TH-232	U		0.10		ប	GAM
Uranium 235	15117-96-1	U		0.086		ט	GAM
Uranium 238	U-238	U		2.4		Ü	GAM
Americium 241	14596-10-2	ש		0.16		U	GAM
Silver 108m	14391-65-2	Ü		0.016		υ	GAM

100-F Remaining Sites Burial Grounds

QC-BLANK #55497

METHOD BLANKS
Page 1
SUMMARY DATA SECTION
Page 8

Lab id EBRLNE
Protocol Hanford
Version Ver 1.0
Form DVD-DS
Version 3.06
Report date 01/11/06

B. Carlotte M. A. Calletta A. Charletta, C. Marcilla, S. Marcilla, S. Calletta, S. Calletta, S. Carlotta, C. C

EBERLINE SERVICES/RICHMOND

SAMPLE DELIVERY GROUP K0146

7790-003

LAB CONTROL SAMPLE

Lab Control Sample

	7790 Melissa C. Mannion	Client/Case no Contract	<u>Hanford</u> <u>SDG K0146</u> <u>No. 630</u>
Lab sample id	R512098-03	Client sample id	Lab Control Sample
Dept sample id	7790-003	Material/Matrix	SOLID
	•	SAF No	RC-032

ANALYTE	RESULT pCi/g	2σ ERR (COUNT)	MDA .pCi/g	RDL pCi/g	QUALI- FIERS	TEST	ADDED pCi/g	2ø ERR pCi/g	REC	3 o LMTS	PROTOCOI LIMITS
Gross Alpha	170	16	3.5	10		93A	214	8.6	79	73-127	70-130
Gross Beta	187	9.9	5.5	15		93B	198	7.9	94	77-123	70-130
Tritium.	873	- 39	10	400		н	937	37	93	84-116	80-120
Carbon 14	2170	15	3.5	50		С	2130	85	102	84-116	80-120
Uranium 233/234	17.4	1.8	0.81	110		บ	18.6	0.74	94	83-117	80-120
Uranium 235	14.1	1.5	0.19	1.0		ซ	15.1	0.60	93	82-118	80-120
Uranium 238	18.0	1.8	0.77	1.0		ט	20.2	0.81	89	84-116	80-120
Plutonium 238	23.0	2.1	0.18	1.0		₽Ü	23.8	0.95	97	84-116	80-120
Plutonium 239/240	26.3	2.4	0.18	1.0		PU	26.4	1.1	100	83-117	80-120
Cobalt 60	0.745	0.057	0.027	0.050		GAM	0.739	0.030	101	74-126	80-120
Cesium 137	0.520	0.045	0.037	0.10		GAM	0.544	0.022	96	74-126	80-120

100-F Remaining Sites Burial Grounds

1			 	 	
ı	1				
	QC-LCS	# C C A D C			
	ו טט-דע-ט	仲ンコセフロ			
•	1 -				

LAB CONTROL SAMPLES
Page 1
SUMMARY DATA SECTION
Page 9

EBERLINE SERVICES/RICHMOND

SAMPLE DELIVERY GROUP K0146

7790-005

DUPLICATE

J10VC1

SDG	7790		- 	Client/Case no	Hanford SDG K0146
Contact	Melissa C. Mannion			Contract	No. 630
	DUPLICATE		ORIGINAL		
Lab sample id	R512098-05	Lab sample id	R512098-01	Client sample id	J10VC1
Dept sample id	7790-005	Dept sample id	7790-001	Location/Matrix	126-F-2 Clearwells Stock SOLID
		Received	12/16/05	Collected/Weight	12/14/05 09:35 1103 q
* solids	95,8	% solids	95.8	Custody/SAF No	RC-032-001 RC-032

ANALYTE	DUPLICATE pCi/g	2σ ERR (COUNT)	MDA pCi/g	RDL pCi/g	QUALI- FIERS	TEST	ORIGINAL pC1/g	2σ ERR (COUNT)	MDA pCi/g	QUALI- FIERS	RPD	3σ TOT	DER o
Gross Alpha	6.06	3.2	3.5	10		93A	10.4	3.9	3.1		53	102	1.6
Gross Beta	22.7	5.6	7.7	15		93B	20.0	4.4	5.4	•	13	59	0.6
Tritium	0.248	1.5	2.5	400	ช	н	0.207	1.4	2.5	U	-		0
Carbon 14	-0.540	2.6	4.4	50	U	c	-1.99	1.9	3.2	Ü -	-		0.9
Uranium 233/234	0.361	0.20	0.25	1.0		ט	0.291	0.18	0.22		21	124	0.5
Uranium 235	0.119	0.16	0.30	1.0	Ů	ט	0 -	0.071	0.27	ס	-		1.4
Uranium 238	0.492	0.27	0.25	1.0		ט	0.524	0.24	0,22		6	107	0.2
Plutonium 238	· 0	0.074	0.28	1.0	υ	PU	0	0.049	0.19	υ	-		0
Plutonium 239/240	0	0.074	0.28	1.0	U	PU	0.024	0.049	0.19	Ū	-		0.5
Potassium 40	14.0	0.73	0.20			GAM	13.8	0.84	0.36		1	34	0.1
Cobalt 60	. 0		0.020	0.050	ט	GAM	ט		0.038	U	-		0.8
Cesium 137	0.089	0.024	0.024	0.10		GAM	0.071	0.040	0.046		22	93	0.7
Radium 226	0.511	0.046	0.039	0.10	•	GAM	0.516	0.075	D.074		1	41	0.1
Radium 228	0.713	0.090	0.085	0.20		GAM	0.709	0.16	0.16		1	50	0
Europium 152	ט		0.050	0.10	U	MAD	ט		0.091	ט	-		0.8
Europium 154	บ	•	0.063	0.10	U	MAD	· ʊ		0.11	ט	-		0.7
Europium 155	σ		0.065	0.10	U	GAM	υ		0.12	ซ	-		0.8
Thorium 228	0.589	0.026	0.024			GAM	0.651	0.050	0.048		10	35	0.9
Thorium 232	0.713	0.090	0.085		*	GAM	0.709	0.16	0.16		1	50	0
Uranium 235	υ		0.14	•	σ	GAM	ט		0.16	ט .	-		0.2
Uranium 238	ט		2.5		U	GAM	Ū		4.7	U	-		0.8
Americium 241	ָ ט		0.11	+	U	GAM	Ū		0.33	U	-		1.3
Silver 108m	U	•	0.014		Ū	GAM	ט		0.027	Ū	-		0.8

100-F Remaining Sites Burial Grounds

QC-DUP#1 55498

DUPLICATES

Page 1
SUMMARY DATA SECTION

Page 10

Lab id EBRLNE
Protocol Hanford
Version Ver 1.0
Porm DVD-DUP
Version 3.06

Report date 01/11/06

Date:

1 March 2006

To:

Washington Closure Hanford Inc. (technical representative)

From:

TechLaw, Inc.

Project:

100F Remaining Sites Burial Grounds - Soil - Full Protocol - Waste Site

126-F-2

Subject: Semivolatile - Data Package No. K0146-LLI

INTRODUCTION

This memo presents the results of data validation on Data Package No. K0146 prepared by Lionville Laboratory Inc. (LLI). A list of samples validated along with the analyses reported and the method of analysis is provided in the following table.

Mestimede/Italia	Maring la para s		#7Validation	alle a Date
J10VC1	12/14/05	Soil	С	See note 1
J10VC2	12/14/05	Soil	С	See note 1
J10VC3	12/14/05	Soil	С	See note 1

^{1 -} Semivolatiles by 8270C.

Data validation was conducted in accordance with the Bechtel Hanford Incorporated (BHI) validation statement of work and the 100 Area Remedial Action Sampling and Analysis Plan (DOE/RL-96-22, February 2005). Appendices 1 through 5 provide the following information as indicated below:

Appendix 1. Glossary of Data Reporting Qualifiers

Appendix 2. Summary of Data Qualification

Appendix 3. Qualified Data Summary and Annotated Laboratory Reports

Appendix 4. Laboratory Narrative and Chain-of-Custody Documentation

Appendix 5. Data Validation Supporting Documentation

DATA QUALITY OBJECTIVES

Holding Times

Analytical holding times were assessed to ascertain whether the holding time requirements were met by the laboratory. The holding time requirements are as follows: Samples must be extracted within 14 days of the date of sample collection and analyzed within 40 days from the date of extraction.

If holding times are exceeded, but not by greater than two times the limit, all associated sample results are qualified as estimates and flagged "J" for detects and "UJ" for non-detects. If holding times are exceeded by greater than two

times the limit, all associated detectable sample results are qualified as estimates and flagged "J" and all non-detects are rejected and flagged "UR".

All holding times were met.

Method Blanks

Method blank analyses are conducted to determine the extent of laboratory contamination introduced through sampling, sample preparation and analysis. At least one acceptable method blank analysis must be conducted for every 20 samples. No contaminants should be present in the method blank. Analytical results for analytes present in any sample at less than five times the concentration of that analyte found in the associated blank are qualified as non-detects and flagged "U". Common laboratory contaminants present in samples at less than ten times the concentration of that analyte found in the associated blank are qualified as non-detects. If a sample result is less than the CRQL and is less than five times (or less than ten times for lab contaminants) the highest associated blank result, the sample result value is raised to the CRQL level and qualified as undetected "U".

Due to method blank contamination, the bis(2-ethylhexyl)phthalate result in samples J10VC1 and J10VC3 were qualified as undetected, raised to the RQL and flagged "U".

All other method blank results were acceptable.

Field Blanks

One field blank (J10VC3) was submitted for analysis. Di-n-butylphthalate was detected in the field blank. Under the WCH statement of work, no qualification is required.

Accuracy

Matrix Spike/Matrix Spike Duplicate & Blank Spike Recoveries

Matrix spike/matrix spike duplicate analyses are used to assess the analytical accuracy of the reported data and the effect of the matrix on the ability to accurately quantify sample concentrations. Matrix spike/matrix spike duplicate analyses are performed in duplicate using five compounds for which percent recoveries must be within a range of 50-150% or within laboratory control limits. If spike recoveries are outside control limits, detected sample results less than five times the spike concentration are qualified as estimates and flagged "J".

000002

Undetected sample results with spike recoveries below control limits are qualified as estimates and flagged "UJ". Undetected sample results are not qualified if the spike recovery is above control limits. Sample results greater than five times the spike concentration require no qualification.

Due to a matrix spike duplicate recovery outside QC limits (53%), all 4-chlor-3-methyl phenol results were qualified as estimates and flagged "J".

Due to a matrix spike recovery outside QC limits (8%), all hexachlorocyclopentadiene results were qualified as estimates and flagged "J".

Due to a matrix spike duplicate recovery outside QC limits (39%), all 3-nitroanaline results were qualified as estimates and flagged "J".

Due to the matrix spike being diluted out, all 2,4-dinitrophenol results were qualified as estimates and flagged "J".

Due to a matrix spike duplicate recovery outside QC limits (34%), all 4-nitroanaline results were qualified as estimates and flagged "J".

Due to a matrix spike recovery outside QC limits (27%), all 4,6-dinitro-2-methylphenol results were qualified as estimates and flagged "J".

Due to a matrix spike duplicate recovery outside QC limits (49%), all n-nitrosodiphenylamine results were qualified as estimates and flagged "J".

Due to a matrix spike duplicate recovery outside QC limits (48%), all butylbenzylphthalate results were qualified as estimates and flagged "J".

Due to the matrix spike duplicate being diluted out, all 3,3-dichlorobenzidine results were qualified as estimates and flagged "J".

Due to a matrix spike duplicate recovery outside QC limits (40%), all chrysene results were qualified as estimates and flagged "J".

Due to a matrix spike duplicate recovery outside QC limits (40%), all bis(2-ethylhexyl)phthalate results were qualified as estimates and flagged "J".

Due to LCS recoveries outside QC limits, all nitrobenzene (47%), isophorone (53%), 2-nitrophenol (48%), 2,4-dimethylphenol (45%), 1,2,4-trichlorobenzene (46%), 4-chloro-3-methylphenol (53%), 2-methylnaphthalene (52%) were qualified as estimates and flagged "J".

All other accuracy results were acceptable.

Surrogate Recovery

The analyses of surrogate compounds provide a measure of performance for individual samples. Matrix-specific surrogate compound recovery control windows have been established by the EPA CLP program. If two surrogates of the same class of compounds (base/neutral or acid) are out of control limits, all associated sample results greater than the contract required quantitation limit (CRQL) are qualified as estimates and flagged "J". Sample results less than the CRQL and below the lower control limit are qualified as estimates and flagged "UJ". Sample results less than the CRQL with recoveries above the upper control limit require no qualification. If a surrogate recovery is less than 10%, detects are qualified as estimates and flagged "J" and nondetects are rejected and flagged "UR".

All surrogate results were acceptable.

Precision

Matrix Spike/Matrix Spike Duplicate Samples

Matrix spike (MS)/matrix spike duplicate (MSD) results provide matrix-specific information on the precision of the method for specific target compound classes. Precision is expressed by the relative percent difference (RPD) between the recoveries of duplicate matrix spike analyses performed on a sample. Samples results must be within RPD limits of +/-30%. If RPD values are out of specification and the sample concentration is less than five times the spike concentration, all associated detected sample results are qualified as estimates and flagged "J". If RPD values are out of specification and the sample concentration is greater than five times the spike concentration, no qualification is required.

Due to an RPD outside QC limits (46%), all 4-chlor-3-methyl phenol results were qualified as estimates and flagged "J".

Due to an RPD outside QC limits (138%), all hexachlorocyclopentadiene results were qualified as estimates and flagged "J".

Due to an RPD outside QC limits (70%), all 3-nitroanaline results were qualified as estimates and flagged "J".

Due to the matrix spike being diluted out, all 2,4-dinitrophenol results were qualified as estimates and flagged "J".

Due to an RPD outside QC limits (82%), all 4-nitroanaline results were qualified as estimates and flagged "J".

Due to an RPD outside QC limits (73%), all 4,6-dinitro-2-methylphenol results were qualified as estimates and flagged "J".

Due to an RPD outside QC limits (49%), all butylbenzylphthalate results were qualified as estimates and flagged "J".

Due to the matrix spike duplicate being diluted out, all 3,3-dichlorobenzidine results were qualified as estimates and flagged "J".

Due to an RPD outside QC limits (45%), all benze(a)anthracene results were qualified as estimates and flagged "J".

Due to an RPD outside QC limits (64%), all chrysene results were qualified as estimates and flagged "J".

Due to an RPD outside QC limits (52%), all bis(2-ethylhexyl)phthalate results were qualified as estimates and flagged "J".

All other precision results were acceptable.

Field Duplicate Samples

One set of field duplicates (J10VC1/J10VC2) were submitted for analysis. Field duplicates are compared using the same criteria as for laboratory duplicates. All field duplicate results were acceptable.

· Analytical Detection Levels

Reported analytical detection levels are compared against the required quantitation limits (RQL's) to ensure that laboratory detection levels meet the required criteria. All undetected analytes in samples J10C1 and J10VC2 and eight analyes in sample J10VC3 exceeded the RQL. Under the WCH statement of work, no qualification is required. All other analytes met the RQL.

Completeness

Data package No. K0146-LLI was submitted for validation and verified for completeness. Completeness is based on the percentage of data determined to be valid (i.e., not rejected). The completion percentage was 100%.

MAJOR DEFICIENCIES

None found.

MINOR DEFICIENCIES

The following minor deficiencies were noted:

Due to method blank contamination, the bis(2-ethylhexyl)phthalate result in samples J10VC1 and J10VC3 were qualified as undetected, raised to the RQL and flagged "U".

Due to a matrix spike duplicate recovery outside QC limits (53%), all 4-chlor-3-methyl phenol results were qualified as estimates and flagged "J".

Due to a matrix spike recovery outside QC limits (8%), all hexachlorocyclopentadiene results were qualified as estimates and flagged "J".

Due to a matrix spike duplicate recovery outside QC limits (39%), all 3-nitroanaline results were qualified as estimates and flagged "J".

Due to the matrix spike being diluted out, all 2,4-dinitrophenol results were qualified as estimates and flagged "J".

Due to a matrix spike duplicate recovery outside QC limits (34%), all 4-nitroanaline results were qualified as estimates and flagged "J".

Due to a matrix spike recovery outside QC limits (27%), all 4,6-dinitro-2-methylphenol results were qualified as estimates and flagged "J".

Due to a matrix spike duplicate recovery outside QC limits (49%), all n-nitrosodiphenylamine results were qualified as estimates and flagged "J".

Due to a matrix spike duplicate recovery outside QC limits (48%), all butylbenzylphthalate results were qualified as estimates and flagged "J".

Due to the matrix spike duplicate being diluted out, all 3,3-dichlorobenzidine results were qualified as estimates and flagged "J".

Due to a matrix spike duplicate recovery outside QC limits (40%), all chrysene results were qualified as estimates and flagged "J".

Due to a matrix spike duplicate recovery outside QC limits (40%), all bis(2-ethylhexyl)phthalate results were qualified as estimates and flagged "J".

Due to an RPD outside QC limits (46%), all 4-chlor-3-methyl phenol results were qualified as estimates and flagged "J".

Due to an RPD outside QC limits (138%), all hexachlorocyclopentadiene results were qualified as estimates and flagged "J".

Due to an RPD outside QC limits (70%), all 3-nitroanaline results were qualified as estimates and flagged "J".

Due to the matrix spike being diluted out, all 2,4-dinitrophenol results were qualified as estimates and flagged "J".

Due to an RPD outside QC limits (82%), all 4-nitroanaline results were qualified as estimates and flagged "J".

Due to an RPD outside QC limits (73%), all 4,6-dinitro-2-methylphenol results were qualified as estimates and flagged "J".

Due to an RPD outside QC limits (49%), all butylbenzylphthalate results were qualified as estimates and flagged "J".

Due to the matrix spike duplicate being diluted out, all 3,3-dichlorobenzidine results were qualified as estimates and flagged "J".

Due to an RPD outside QC limits (45%), all benze(a)anthracene results were qualified as estimates and flagged "J".

Due to an RPD outside QC limits (64%), all chrysene results were qualified as estimates and flagged "J".

Due to an RPD outside QC limits (52%), all bis(2-ethylhexyl)phthalate results were qualified as estimates and flagged "J".

Due to LCS recoveries outside QC limits, all nitrobenzene (47%), isophorone (53%), 2-nitrophenol (48%), 2,4-dimethylphenol (45%), 1,2,4-trichlorobenzene (46%), 4-chloro-3-methylphenol (53%), 2-methylnaphthalene (52%) were qualified as estimates and flagged "J".

Data flagged "J" indicates that the associated concentration is an estimate, but under the BHI statement of work, the data may be usable for decision-making purposes. All other validated results are considered accurate within the standard

error associated with the methods.

All undetected analytes in samples J10C1 and J10VC2 and eight analyes in sample J10VC3 exceeded the RQL. Under the WCH statement of work, no qualification is required.

REFERENCES

WCH, Contract #20266, Validation Statement of Work, Washington Closure Hanford Incorporated, July 7, 2003.

DOE/RL-96-22, Rev. 4, 100 Area Remedial Action Sampling and Analysis Plan, U.S. Department of Energy, February 2005.

Appendix 1.

Glossary of Data Reporting Qualifiers

Qualifiers which may be applied by data validators in compliance with the BHI validation SOW are as follows:

- U Indicates the compound or analyte was analyzed for and not detected in the sample. The value reported is the same quantitation limit corrected for sample dilution and moisture content by the laboratory.
- Indicates the compound or analyte was analyzed for and not detected in the sample. Due to a minor QC deficiency identified during the data validation, the associated quantitation limit is an estimate.
- Indicates the compound or analyte was analyzed for and detected. Due to a minor QC deficiency identified during the data validation, the associated quantitation limit is an estimate.
- R Indicates the compound or analyte was analyzed for, detected, and due to an identified major QC deficiency, the data are unusable.
- UR Indicates the compound or analyte was analyzed for and not detected in the sample. Additionally, the data is unusable due to an identified major QC deficiency.
- NJ Indicates presumptive evidence of a compound at an estimated value.

 The data may not be valid for some specific applications (i.e., usable for decision-making purposes).
- N Indicates presumptive evidence of a compound. The data may not be valid for some specific applications usable for decision-making purposes).

化二氯化甲基酚 网络人名格兰 建二氯甲基苯酚异二甲基甲基基

Appendix 2

Summary of Data Qualification

SEMIVOLATILE DATA QUALIFICATION SUMMARY*

SEGAKOTA CHILLIAN AND AND AND AND AND AND AND AND AND A		PICE WILLIAM STATES	PAGE 1 OF 14.
COMMENTS:			
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON
Bis(2-ethylhexyl)phthalate	U at RQL	J10VC1, J10VC3	Blank contamination
Hexachlorocyclopentadiene	J	All	MS
4,6-dinitro-2-methylphenol			
4-chlor-3-methyl phenol	J	All	MSD
3-nitroanaline			
4-nitroanaline			·
n-nitrosodiphenylamine			
Butylbenzylphthalate			
Chrysene		·	
Bis(2-ethylhexyl)phthalate			
2,4-dinitrophenol	J	All	MS/MSD diluted out
3,3-dichlorobenzidine			
Hexachlorocyclopentadiene	J	All	RPD
4,6-dinitro-2-methylphenol		• .	
4-chlor-3-methyl phenol			
3-nitroanaline			
4-nitroanaline			
Butylbenzylphthalate			
Chrysene			
Bis(2-ethylhexyl)phthalate			
2,4-dinitrophenol			
3,3-dichlorobenzidine			
Benzo(a)anthracene			
Nitrobenzene	J	All	LCS
Isophorone			
2-nitrophenol			
2,4-dimethylphenol			
1,2,4-trichlorobenzene			
4-chloro-3-methylphenol			
2-methylnaphthalene			

^{* -} The Qualified Data Summary Table includes laboratory applied "U" qualifiers not specifically identified here. The laboratory applied "U" qualifiers are included to minimize misinterpretation of results contained in the table.

1986年,第二次 1986年 1986年 1987年 1988年 1986年 1986年 1986年 1986年 1986年 1986年 1986年 1987年 1987年 1987年 1987年 1987年 1987年

Appendix 3

Qualified Data Summary and Annotated Laboratory Reports

C	2
Ç	Þ
-	7
ļ	>

, · · · · · · · · · · · · · · · · 			7					
Project: WASHINGTON CLOSUR			1					
Laboratory: LLi	K0146							
Sample Number		J10VC1		J10VC2		J10VC3		
Remarks		<u> </u>		Duplicate		E. Blank		
Sample Date		12/14/05		12/14/05		12/14/05		
Extraction Date		12/19/05		12/19/05		12/19/05		
Analysis Date		12/23/05		12/22/05		12/22/05		
Semivolatile (8270C)	RQL	Result	Q	Result	Q	Result	Q	
Phenol	660	3400		3400		330		
bis(2-Chloroethyl)ether	660		_	3400	_	330	_	
2-Chlorophenol	660			3400		330	_	
1,3-Dichlorobenzene	660			3400		330		
1,4-Dichlorobenzene	660			3400		330		
1,2-Dichlorobenzene	660			3400		330		
2-Methylphenol	660	3400	U	3400	U	330		
2,2'-oxybis(1-chloropropane)	660	3400	U	3400	U	330	U	
3 and/or 4-Methylphenol	660	3400	U	3400	Ū	330	U _	
N-Nitroso-di-n-propylamine	660	3400	U	3400	U	330	U	
Hexachloroethane	660	3400	U	3400	U	330	U	
Nitrobenzene	660	3400	บป	3400	UJ	330	UJ	
Isophorone	660	3400	w	3400	W	330	UJ	
2-Nitrophenol	660	3400	บป	3400	UJ	330	υJ	
2,4-Dimethylphenol	660	3400	IJ	3400	บัง	330	IJ	
bis(2-Chloroethoxy)methane	660			3400	U	330		
2,4-Dichiorophenol	660	3400	b	3400	Ų.	330		
1,2,4-Trichlorobenzene	660	3400	IJ	3400	UJ	330		
Naphthalene	660	3400	U	3400	U	330	U	
4-Chloroaniline	660	3400	U	3400	Ų	330	υ	
Hexachlorobutadiene	660	3400	U	3400	U	330	U	
4-Chloro-3-methylphenol	660	3400	UJ	3400	UJ	330	UJ	
2-Methylnaphthalene	660	3400	UJ	3400	UJ	330	UJ	
Hexachlorocyclopentadiene	660	3400	UJ	3400	IJ	330	UJ	
2,4,6-Trichlorophenol	660	3400	U	3400	U_	330		
2,4,5-Trichlorophenol	660	8600	υ	8600	U	830	U	
2-Chloronaphthalene	660	3400	Ü	3400		330	U	
2-Nitroaniline	660	8600	U	8600		830		
Dimethylphthalate	660	3400		3400		330		
Acenaphthylene	660	3400		3400		330	_	
2,6-Dinitrotoluene	660			3400		330		
							+	

	_	
Ć	_	١
7	Ξ	ί
Ļ	-	,
C	_)
١,	_	j
Ŀ	-	h
,	j	٠,
L	J	I

Project: WASHINGTON CLOSUI	1							
Laboratory: LLI		K0146		ĺ				
Sample Number		J10VC1		J10VC2		J10VC3		
Remarks				Duplicate		E. Blank		
Sample Date	***************************************	12/14/05		12/14/05		12/14/05		
Extraction Date		12/19/05		12/19/05		12/19/05		
Analysis Date		12/23/05		12/22/05		12/22/05		
Semivolatile (8270C)	RQL	Result	Q		ø	Result	Q	
3-Nitroaniline	660	8600		8600	IJ	830		
Acenaphthene	660			170		330		
2,4-Dinitrophenol	660			8600	UJ	830		
4-Nitrophenol	660	8600	U	8600	Ü	830	Ü	
Dibenzofuran	660			3400	כ	330	_	
2,4-Dinitrotoluene	660			3400		330		
Diethylphthalate	660	3400		3400		330		
4-Chiorophenyl-phenyl ether	660	3400		3400	U	330		
Fluorene	660			210		330		
4-Nitroaniline	660			8600		830		
4,6-Dinitro-2-methylphenol	660			8600		830		
N-Nitrosodiphenylamine	660	3400	IJ	3400		330	UJ	
4-Bromophenyl-phenyl ether	660			3400	ב כ	330		
Hexachlorobenzene	660			3400		330		
Pentachlorophenol	660	8600	U	8600	U	830		
Phenanthrene	660		L	1600		330		
Anthracene	660			410		330		
Carbazole	660	1		3400		330		
Di-n-butylphthalate	660		_	3400	U	49		
Fluoranthene	660		<u> </u>	1800		330		
Pyrene	660	<u> </u>		1800		330		
Butylbenzylphthalate	660			3400		330		
3,3'-Dichlorobenzidine	660			3400		330		
Benzo(a)anthracene	660			760		330		
Chrysene	660			840	_	330		
bis(2-Ethylhexyl)phthalate	660			3400		660		
Di-n-octylphthalate	660		U	3400	U	330		
Benzo(b)fluoranthene	660			560		330		
Benzo(k)fluoranthene	660			760		330		
Benzo(a)pyrene	660			700		330		
Indeno(1,2,3-cd)pyrene	660			260		330	U	
Dibenz(a,h)anthracene	660			200		330		
Benzo(g,h,i)perylene	660	250		270		330	U	

PRODUCTE PRODUCTION THE TRANSPORTER TO THE TRANSPOR

Semivolatiles by GC/MS, HSL List

Report Date: 12/30/05 14:15 Client: TNUHANFORD RC-032 K0146 Work Order: 11343606001 Page: la RFW Batch Number: 0512L942

	Cust ID:	J10VC1	L	J10VC	1	J10VC	1	J10VC2		J10VC3	3	SBLKRT	
Sample	RFW#:	001	.	001 M	S	001 MS	D	002		003	3	05LE1009	- MI
Information	Matrix:	SOIL	•	SOIL		SOIL		SOIL		SOIL		SOI	L
•	D.F.:	10.		10		10		10.	0	1.0	00	1	.00
•	Units:	ug/I	(g	ug/	Kg	ug/	Kg	ug/K	g	ug/K	(g	ug	/K
	Nitrobenzene-d5	41	*	62	ક	61	8	66	*	48	*	54	
Surrogate	2-Fluorobiphenyl	⁻ 54	*	76	ક	73	*	81	8	52	*	58	
Recovery	Terphenyl-d14	53	%	62	¥	45	ક	101	¥	68	*	71	
	Phenol-d5	40	*	74	*	59	¥	68	ş	49	욯	55	
	2-Fluorophenol	33	*	49	ક	56	*	58	४	47	옿	54	
	2,4,6-Tribromophenol	54	% :=fl==:	80	₹.	65	*	92	8	57	*	59	
Phenol	对应可含含含是 计算机 计算机 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	3400	Ü Ü	70	==fl=: %	 68	% ==I1==	3400	=11=== U	330	==[l= U	33(
	oethyl)ether	3400	U	87	*	69	ę.	3400	Ü	330	ū	33(
2-Chlorophe		3400	U	87	*	71	Ł	3400	Ū	330	Ü	330	
1.3-Dichlor	obenzene	3400	σ.	80	ક	61	٠ ه	3400	Ü	330	Ū	33(
1,4-Dichlor	obenzene	3400	U	79	*	64	f	3400	Ū	330	Ü	33(
1,2-Dichlor	obenzene	3400	U	82	ક	· - 7 5	ક	3400	U	330	Ū	330	
2-Methylphe	nol	3400	U .	85	ક	74	ક	3400	Ū	330	U	330	
2,2'-oxybis	(1-Chloropropane)	3400	Ū	7.5	*	77	*	3400	Ū	330	Ū	330	
📥 4-Methylphe	nol	3400	U	. 88	*	64	*	3400	U	330	Ū	330	
N-Nitroso-d	i-n-propylamine	3400	U	93	*	73	욯	3400	Ü	330	Ū	331	
Hexachloroe	thane	3400	Ū	65	8	62	ક	3400	U	330	U	330	
Nitrobenzen	e	3400	ロブ	67	*	66	*	3400	UJ	330	ប្រ	330	
Isophorone_		3400	U	83	ક	73	¥	3400	תֿ ט	330	υĺ		
2-Nitrophen	ol	3400	υŢ	70	*	64	ક્ષ	3400	บรั	330	υJ		
2,4-Dimethy	lphenol	3400	υJ	88	*	65	ક	3400	υĴ	330	υŽ		
bis(2-Chlor	oethoxy) methane	3400	U	76	ક્ષ	69	*	3400	บ .	330	ับ	. 330	
2,4-Dichlor		3400	υ	68	¥	69	*	3400	U	330	Ü	33(
1,2,4-Trich	lorobenzene	3400	UI	70	, %	63	*	3400	נט	330	υJ		
Naphthalene		3400	U	85	*	73	*	3400	υ	330	Ü	330	
4-Chloroani	line	3400	U	71	*	25	*	3400	Ü	330	Ū	33(
Hexachlorob		3400	U _	82	*	74	*	34.00	U .	330	U	330	
	methylphenol	3400		85	*	53	* &	3400	υJ	330	ָד ס	330	
2-Methylnap	hthalene	3400		81	¥	75	¥	3400	T u	330	υ .		
Hexachloroc	yclopentadiene	3400		8	* *	44	ક	3400	ប្រ	330	υĴ		
2,4,6-Trich		3400		76	8	73	¥	3400	Ū .	330	U	330	
2,4,5-Trich		8600	U	85	¥.	66	*	8600	U	830	Ū	830	
<pre>*= Outside</pre>	of EPA CLP QC limits.	•				1/2		7/25/04	•				

pr 2/25/04

RFW Batch Number:	Cust ID:	Client: J10VC		J10VC		J10V0		Order: 11 J10VC2		J10VC3		age: 1b BLKRT	
	RFW#:		L	001 M	S	001, MS	SD.	.002	!	003	0!	5L K 1009-1	MB 1
2-Chloronaphthalen		3400	U	86		76	*	3400	ט	330	rī —	330	Ü
2-Nitroaniline			ט	74	¥	73	¥	8600	Ū	830	Ü	830	
Dimethylphthalate		3400	Ū	84	8	80	*	3400	ប	330	-	330	
Acenanhthulese		3400	บ	87	*	78	8	3400			Ü	330	
2,6-Dinitrotoluene		3400	ד	80	*	79	*	3400		330	Ū	330	
3-Nitroaniline	•	8600	UJ	81	*		* %	8600	סט	830	UJ	830	
Acenaphthene		3400	ט	86	¥	89	& ·	170	J	330	ָט פֿי	330	
2,4-Dinitrophenol_		8600	υJ	D	*	26	*	8600	UJ	830	υJ	830	
4-Nitrophenol		8600	U	78	*	78	ę.	8600	บ	830	U	830	
Dibenzofuran		3400	ប	88	*	86	8	3400	Ü	330		330	
2,4-Dinitrotoluene			U	76	ક	72	*	3400	Ū	330		330	
Diethylphthalate		3400	U	84	윰	81	*	3400			Ū	330	
4-Chlorophenyl-phe	nylether	3400	U	85	ક	80	£ .	3400		330	Ü	330	
Fluorene		3400	U	96	ક	93	8	210	J	330	Ū	330	
Fluorene		8600	υŢ	81	ŧ		* %	8600		830	υJ	830	
4,6-Dinitro-2-meth	ylphenol	8600	ับวิ		* &	58	*	8600	υJ	830	υJ	830	
N-Nitrosodiphenyla	mine (1)	3400	υJ	71	¥	49	± 2	3400	υJ			330	
4-Bromophenyl-phen	ylether	3400	U	72	*	61	8	3400	Ü	330	U	330	
Hexachlorobenzene		3400	Ū	75	*	74.	4	3400		330	บ	330	
Pentachlorophenol		8600	. U	91	*	55	&	8600		830	Ū	830	
Phenanthrene		910	J	123	울	126	*	1600		330	Ū	330	
Anthracene		260	J	98	ક	75	S.	410				330	-
Carbazole		3400	σ	. 99	કુ	60	¥	3400			Ū	330	
Di-n-butylphthalat	e	3400	υ	92	ક્ષ	86	*	3400		49	J	330	
Fluoranthene		1000	J	123	*	110	*	1800	J	330	Ū	330	
Pyrene .			J	92	*	76.	¥	1800	J	330	Ū	330	_
Butylbenzylphthala 3,3'-Dichlorobenzi	te	3400	υŢ	79	ક્ષ	48	* %	3400	υJ	330	T.v	330	
3,3'-Dichlorobenzi	dine	3400	UЈ	78	¥	D.	*	3400	UJ	330	v J	330	Ū
Benzo(a)anthracene	·	420	v.r	93	8	59	*	760	y J	330	u T	330	U
Chrysene_ bis(2-Ethylhexyl)p			45	89	奢	40	* %		24 丁	330	ט ד	330	_
bis(2-Ethylhexyl)p	hthalate	160 4#K	-⊅B∪∑	68	*	40	* %	3400		46 EF51			
Di-n-octyl phthala	ite	3400	U	69	*	100	*	3400	~	330	TI .	330	
Benzo(b)fluoranthe	ne	220	J	84	*	96	*	560		330		330	
Benzo(k)fluoranthe	ne	320	J	. 83	%	102	*	760		330		330	
Benzo(a)pyrene		410	J	90	¥	94	•	700		330		330	
Benzo(a)pyrene Indeno(1,2,3-cd)py	rene	240	J	101	¥	79	*	260		330		330	
Dibenz (a,h)anthrac	ene	3400	U	95	¥	81	*	200		330		330	
Benzo (o h i) nervle	ne parated from Diph	250	đ	91	¥	72	*	270		330		330	

m 11 mits.

HIQHVILLE HEDGE & COLY, INC.

Semivolatiles by GC/MS, HSL List

Report Date: 12/30/05 14:15 Client: TNUHAMFORD RC-032 K0146 Work Order: 11343606001 Page: 2a RFW Batch Number: 0512L942

		SBLKRT BS					•	
Sample	RFW#:	05LE1009-MB	L					
Information	Matrix:	SOIL		•			•	
	D.F.:	. 1.00		•				•
	Units:	ug/Kg						,
	Nitrobenzene-d5	46	<u> </u>					<u> </u>
Surrogate	2-Fluorobiphenyl	70 1	ķ					
Recovery	Terphenyl-d14	81	t	•		•		
	Phenol-d5	. 66	ł .					
•	2-Fluorophenol	59 1	ł					
	2,4,6-Tribromophenol	77	k				•	
	: # # # # # # # # # # # # # # # # # # #			======fl=====	=====fl===	=====fl==	=====fl==	======fl
Phenol		-						
bis (2-Chloroe		-	.					
2-Chloropheno		-	t					
1,3-Dichlorob		_	k					
1,4-Dichlorok		_	t	•				
1,2-Dichlorok		_	.	•				
2-Methylpheno	L-Chloropropane)	- .	<u>.</u>	•				
4-Methylpheno		_ 64 1	\$				· ·	
	n-propylamine	_	* \$					•
	ane	_	> }					
	iaite	- 47 * 9	-					
		_	=	•				
2-Nitropheno			•					
2,4-Dimethylr		45 * 1	-					
	ethoxy) methane	50 1		•			÷	
2,4-Dichlorop		50	_		1			
_	probenzene	46 * \$	•		10	1		
Naphthalene	JIODenzene	47				Inde		
4-Chloroanili	ine		e k		2	1000		
Hexachlorobut		_	• }		_	-1		
	ethylphenol	-	•	•			•	
2-Methylnapht		_ 52 * 1						•
	clopentadiene	_ 52 ~ 1 54 1		·				
2,4,6-Trichlo		-	k.				•	
2,4,5-Trichle		_						
	f EPA CLP QC limits.	- (* 1	•					

000018

Cust ID: SBLKRT BS

RFW#:	05LE1009-	MB1
-------	-----------	-----

2-Chloronaphthalene	72	옿					•		•			
2-Nitroaniline	74	왐										
Dimethylphthalate		¥										
Acenaphthylene		*								*		
2,6-Dinitrotoluene	75	¥										
3-Nitroaniline	95	*	·								-	
Acenaphthene	75	웋									-	
2,4-Dinitrophenol	31	*										
4-Nitrophenol		ક										
Dibenzofuran	74	*										
2,4-Dinitrotoluene	79	*	•								÷	
Diethylphthalate	79	各										
4-Chlorophenyl-phenylether	72	*			•	•						
Fluorene		*		•								
4-Nitroaniline	92	. કૃ										
4,6-Dinitro-2-methylphenol		*		•	,							
N-Nitrosodiphenylamine (1)	_	ŧ										
4-Bromophenyl-phenylether		*						•				
Hexachlorobenzene	75	ક્ષ								•		
Pentachlorophenol	87	*								-		
Phenanthrene		*										
Anthracene	- 73	ક										
Carbazole	79	*	•									
Di-n-butylphthalate	82	· &										
Fluoranthene		ક્ર					•					
Pyrene		ŧ										
Butylbenzylphthalate	- 84	8.					1	1				
3,3'-Dichlorobenzidine	77	*					- X		4			
Benzo(a)anthracene	- 68	¥						1)	/ /			
Chrysene		*						/ \	06</td <td></td> <td></td> <td></td>			
bis(2-Ethylhexyl)phthalate	•	ક					. /	2/4	H			
Di-n-octyl phthalate	-	*			-			<u> </u>				
		*										
Benzo(b)fluorantheneBenzo(k)fluoranthene	- 68	¥										•
Benzo(a) pyrene	- 75	ş						,			-	
Indeno(1,2,3-cd)pyrene	-	¥										
Dibenz(a,h) anthracene		ş					~			•		
Benzo(g,h,i) perylene	80	· }										

Appendix 4

Laboratory Narrative and Chain-of-Custody Documentation

Case Narrative

Client: TNU-HANFORD RC-032

LVL#: 0512L942

SDG/SAF # K0146/RC-032

W.O. #: 11343-606-001-9999-00 Date Received: 12-16-2005

SEMIVOLATILE

Three (3) soil samples were collected on 12-14-2005.

The samples and their associated samples were extracted according to Lionville Laboratory SOPs based on SW 846 method 3540C on 12-19-2005 and analyzed according to criteria set forth in Lionville Laboratory SOPs based on SW 846 Method 8270C for TCL Semivolatile target compounds on 12-22,23,27-2005.

The following is a summary of the QC results accompanying the sample results and a description of any problems encountered during their analyses:

- 1. All results presented in this report are derived from samples that met LvLI's sample acceptance policy.
- 2. Samples were extracted and analyzed within required holding time.
- 3. Non-target compounds were detected in the samples.
- 4. Samples J10VC1 and J10VC2 required a 10-fold dilution due to dark nature of the sample matrix.
- 5. All surrogate recoveries were within acceptance criteria.
- 6. Nine (9) of one hundred twenty-six (126) obtainable matrix spike recoveries were outside acceptance criteria. Seven (7) of sixty-four (64) blank spike recoveries were outside acceptance criteria. A copy of the Sample Discrepancy Report (SDR) has been enclosed.
- 7. The method blank contained the common laboratory contaminant Bis (2-Ethylhexyl) phthalate at a level less than the CRQL.
- 8. Internal standard area and retention time criteria were met.
- 9. Manual integrations are performed according to SOP QA-125 to produce quality data with the utmost integrity. All manual integrations are required to be technically valid and properly documented. Appropriate technical flags are defined in the Glossary ("Technical Flags For Manual Integration").
- 10. LvLI is NELAP accredited by the state of Pennsylvania and holds over 20 additional state accreditations. For a complete listing of accrediting authorities and the corresponding analytes/methods, please contact your Project Manager.
- I certify, that this sample data package is in compliance with SOW requirements, both technically and for completeness, other than the conditions detailed above. Release of the data, contained in this hard-copy data package, has been authorized, by the Laboratory Manager or a designee, as verified by the following signature.

Iain Daniels

Laboratory Manager

Lionville Laboratory Incorporated

som\gorup\data\bna\mu-hanford\0512-942.doc
The results presented in this report relate only to the analytical testing and conditions of the samples at receipt and during storage. All pages of this report are integral parts of the analytical data. Therefore, this report should only be reproduced in its entirety of 1 7 pages.

000021

Lionville Laboratory S	Sample Discrepancy Report	(SDR) SDR#: OSMS418
1-11-4 Cl - Cl	Potob: 07/2 / 0/12	Parameter: 8270
Initiator: Sharon Saylor	Batch: OSIZL 942	
Date: 12-29-05	Samples: <u>Oblas, asd</u>	Matrix: Solio
Client: TNU	Method: WB49MCAWW/CLP/	Prep Batch: OSIE 1009
		· · · · · · · · · · · · · · · · · · ·
1. Reason for SDR a. COC Discrepancy Tech Profi Transcripti		ampler Emor on C-O-C ther
b. General Discrepancy		
Hold Time Exceeded in:	ontainer Broken Wrong Sa sufficient Sample Preservati of Amenable to Analysis	mple Pulled Label iD's Illegible on Wrong Received Past Hold
Note : Verified by [Log-In] or [Prep Group] (chr	cle)signature/date:	
c. Problem (include all relevant speci		
•		
■ · · · · · · · · · · · · · · · · · · ·	real analytes in the mutax	Spike, matrix spike dup to
blunkspike		
2. Known or Probable Causes(s)	•	·
loce due	ing extraction	
1023 842	THE CENTERIOR	
•		
3. Discussion and Proposed Action	Other Description:	
Re-log	_	
Entire Batch Following Samples:	narrate	•
Re-leach		
Re-extract	\wedge	
Re-digest Revise EDD	(1)	•
Change Test Code to	\	
Place On/Take Off Hold (circle)	- \	1 -
4. Project Manager Instructionssign	ature/tiate: 100	
✓ Concur with Proposed Action	\mathcal{A}	
Disagree with Proposed Action; S Include in Case Narrative	ee instruction '	
Client Contacted:		
Date/Person		•
Add		
Cancel		
5. Final Actionsignature/date:	Other Explan	ation:
Verified re-[log][leach][extract][dige Included in Case Narrative	eriller renkeral (Micro)	
Hard Copy COC Revised		
Electronic COC Revised		
EDD Corrections Completed	d damaged adalasis As As as states of	. 97_E 21 of core
	d, forward original to QA Specialist for	
Route Distribution of <u>Completed</u> SDRX Initiator	Route Distribution	on of Completed SDR
X Lab General Manager M.T	aylor Inoma	s: Beegle inic: Perrone
X Project Mgr. Stone/Johnson		C: Kiger
Data Management: Stilwell	(Z) X MS: R	tychla (/Daley)
Sample Prep: Beegle/Kiger	Log-in	: Репу
	Other	

en en la companya di mangangan kanangan di kanangan di kanangan di kanangan di kanangan di kanangan di kananga

Washington Closu	re Hanford	C	HAIN OF CUST	rody/s	AMP	LE ANAL	YSIS	REQUES	r i	RC-032-001		Page 1	ol T
Collector R.T. Coffman			nev Contact Coffman	Telepho 528-6		- ;		Project Coord KESSNER, JH		Price Code	8K	Data Tı	urnaround _©
Project Designation 100-F Remaining Sites Buri	ial Grounds - Soil Full Pr		ine Location -F-2 Clearwells Stockpil	ic area		<u></u>		SAF No. RC-032		Air Qualit	у 🗆	15	DAY 60
ice Chest No. ERC -	01-027		Logbook No. -1174		22000		Method of Shipment FedEx				•	. B	
Shipped To EBERLINE SERVICES	JONVILLE	Offsite	Property No.	0601	136			Bill of Lading	/Air Bill	No. Se	e OSP	د	0
POSSIBLE SAMPLE HAZ	ARDS/REMARKS] .						
NA.			Preservation	None	Coel 4	C Cool4C	Cont	IC Your	None	Nous	Nose	Cool 4C	1
Special Handling and/or	Storage		Type of Container	aG.	∎G		, aG	-	₩G	D _a	aG.	aG	
Cool 4 deg C	-		No. of Container(s)	1	1		1	' ' '	\ '	1	1	1 .	
			Volume 25	500 ml (25 (2-15-1	60mL	_ 60anL	120n	aL 500mi.	60mi	>	60mL	125mL	
00002	Sample anai	Lysis		See item (1) is Special Instructions.	Hex - 71		Sani-Vi 827GA (Carton, Tritium	Intropic Physosium	Gross Bots	TPH (Total) - 415.i	
ြည် ျ		, •		l						12	_ : ·	' ·	
Sample No.	Matrix *	Sample Date	Sample Time							a carpon contra			
J10VC1	SOIL	12/14/05	0935	X	X	X	X				V	X	
J10VC2	SOIL	12/14/05	0935	X	X	_ X	X				$\overline{}$	X	
J10VC3	SOIL	12/14/0	0935	X			X						-
											+ \		
CHAIN OF POSSESSI		Sign/Prim			SI	PECIAL INSTI	RUCTIO)NS	<u> </u>		_1	4	Matrix *
Relinquished By/Removed From Relinquished By/Removed From	Date/Time 16.3	Reserved By/Stor	3728 dia 3728	12514) 12514) 	30 0 1/5 N	1) ICP Metals - 60 ladminn, Calcium, lickel, Potassium, ;)10 (Clien Chromiu Selenium	t Lint) (Aluminum, m, Cobalt, Copper, Siticon, Silver, Sod	Iron, Lead ium. Vana	, Magnesium, Ma dium, Zioc!: Mer	inganese, Molybersery - 7470 - (C	denum,	S-Sell SB-Goliment SO-Solid SI-Shelp
Refer 26 3728 / Retinquished By/Removed From / RZ Steffler 1.2.40	2-15-05 1119 Date(Time 1119 W. W. 12-15-0	Received By/Stor		/2-/5-0 hate/Time	2) ا سمع	2) Ganna Spectre	эвсору (Т	CL List) (Cesium-1 c - Add-on (Silver-	37, Cobali	-60, Europhan-15	2, Europium-15	6,	W = Water O-Oil A=Air DS-Drum Selide DL-Drum Liquids
Relinquished By/Removad From		Received BySton		ate/Time	las P	Personnel not av Relinguish sann	vailable t	o . . 3728					T=Tipmc Wi=Wipp i=Liquid
Relinquished By/Removed From	Date/Time	Received-By Stor	ed in D	ale/Time	P	Ref# <u>2 C on /2</u>	1.15	15					V=Vegetation X=Other
Relinquished By/Removed From	Date/Time	Received By/Stor	ed In D	ste/Time									
LABORATORY Received SECTION	Ву			Ti	itle						f	Date/Time	
FINAL SAMPLE Disposal P	Method	<u> </u>			-	Diop	osed By				. 1	Date/Time	
					_							<u> </u>	

Appendix 5

Data Validation Supporting Documentation

GC/MS ORGANIC DATA VALIDATION CHECKLIST

VALIDATION LEVEL:	Α	В		D	E
PROJECT:	26-F-2		DATA PACKAG	E: K0146	
VALIDATOR:	tu	LAB: 24	T	DATE: 2/2:	3/66
			SDG: 1/	0146	
		ANALYSES 1	PERFORMED		
SW-846 8260		SW-846 8260 (TCLP)	SW-846 8270		SW-846 8270 (TCLP)
SAMPLES/MATI					
JIOUC	JIOVO	2 JIU1	163		
					Soil
,,					30 1
Technical verification			ASE NARRATIV		Yes No N/A
Comments:					
					· · · · · · · · · · · · · · · · · · ·
				·	
2. INSTRUM	IENT TUNING A	ND CALIBRATIC	ON (Levels D and E	()	6
GC/MS tuning/perfo	ormance check acce	ptable?	***************************************	***************************************	Yes No N/A
Initial calibrations a	cceptable?		***************************************		Yes No N/A
			•••••••••••••••••••••••••••••••••••••••		

			•••••		1 1
			•		Yes No N/A
Comments:					

GC/MS ORGANIC DATA VALIDATION CHECKLIST

3. BLANKS (Levels B, C, D, and E)
Calibration blanks analyzed? (Levels D, E)
Calibration blank results acceptable? (Levels D, E)
Laboratory blanks analyzed?
Laboratory blank results acceptable? Yes No N/A
Field/trip blanks analyzed? (Levels C, D, E)
Field/trip blank results acceptable? (Levels C, D, E) Yes No N/A
Transcription/calculation errors? (Levels D, E)
Transcription/calculation errors? (Levels D, E) Yes No N/A Comments: Wb- bis(2-estylhexyl) photosof - vet Rac (1+c)
FD - di-n-buty photolete - inte
4. ACCURACY (Levels C, D, and E) Surrogates/system monitoring compounds analyzed? Yes No N/A
Surrogate/system monitoring compound recoveries acceptable? Yes No N/A
Surrogates traceable? (Levels D, E) Yes No (N/A)
Surrogates expired? (Levels D, E) Yes No (N/A
MS/MSD samples analyzed?
MS/MSD results acceptable? Yes No N/A
MS/MSD standards NIST traceable? (Levels D, E)
MS/MSD standards? (Levels D, E)
LCS/BSS samples analyzed?
LCS/BSS results acceptable? Yes No N/A
Standards traceable? (Levels D, E) Yes No (N/A
Standards expired? (Levels D, E) Yes No NA
Transcription/calculation errors? (Levels D, E)
Performance audit sample(s) analyzed? Yes NA N/A
Performance audit sample results acceptable?
Comments: 9 Ms/ns D one J all no Pots
7 LCS one - Jal

GC/MS ORGANIC DATA VALIDATION CHECKLIST

5. PRECISION (Levels C, D, and E)	
MS/MSD samples analyzed?	Yes) No N/A
MS/MSD RPD values acceptable?	Yes No N/A
MS/MSD standards NIST traceable? (Levels D, E)	Yes No N/A
MS/MSD standards expired? (Levels D, E)	
Field duplicate RPD values acceptable?	Yes No N/A
Field split RPD values acceptable?	Yes No N/A
Transcription/calculation errors? (Levels D, E)	Yes No (N)A
Transcription/calculation errors? (Levels D, E) Comments: \[\lambda \ \P\ \D'\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	<u> </u>
	·
6. SYSTEM PERFORMANCE (Levels D and E)	\sim
Internal standards analyzed?	1
Iinternal standard areas acceptable?	Yes Nø N/A
Internal standard retention times acceptable?	Yes No N/A
Standards traceable?	Yes No N/A
Standards expired?	Yes No N/A
Transcription/calculation errors?	Yes No N/A
Comments:	
<u> </u>	<u> </u>
7. HOLDING TIMES (all levels)	
Samples properly preserved?	A No N/A
Sample holding times acceptable?	<i>)</i>
Comments:	TOS NO NA
·	

GC/MS ORGANIC DATA VALIDATION CHECKLIST

8. COMPOUND IDENTIFICATION, QUANTITATION, AND DETECTION LIMITS (all
levels)
Compound identification acceptable? (Levels D, E)
Compound quantitation acceptable? (Levels D, E)
Results reported for all requested analyses?
Results supported in the raw data? (Levels D, E)
Samples properly prepared? (Levels D, E)
Laboratory properly identified and coded all TIC? (Levels D, E)
Detection limits meet RDL?
Transcription/calculation errors? (Levels D, E) Yes No N74 Comments: C + (Z cree for S cree ()
9. SAMPLE CLEANUP (Levels D and E)
GPC cleanup performed?
GPC check performed?
GPC check recoveries acceptable?
GPC calibration performed?
GPC calibration check performed?
GPC calibration check retention times acceptable?
Check/calibration materials traceable? Yes No N/A
Check/calibration materials Expired?
Analytical batch QC given similar cleanup?
Transcription/Calculation Errors?
Comments: